

Detailed Site Investigation – Upgrade to Cammeray Public School

68 Palmer Street, Cammeray NSW

Prepared for: Department of Education

Document Information

Report Title: Detailed Site Investigation – Upgrade to Cammeray Public School

Prepared for: Department of Education

Project Address: 68 Palmer Street, Cammeray NSW

File Reference: A101023.0722

Report Reference: A101023.0722.DSI.Cammeray_v4

Document Control

Version	Date	Author	Revision description	Reviewer
V1d	07/02/2024	Andrew Carmichael	Draft for client review	Sam Goldsmith
V1	22/05/2024	Karin Azzam	Final version	Elin Griffiths
V2	20/02/2025	Jessica Whitehead	Update to reflect REF pathway	Sam Goldsmith
V3	28/02/2025	Karin Azzam	Minor updates	Sam Goldsmith
V4	04/03/2025	Karin Azzam	Minor updates	Sam Goldsmith

For and on behalf of

ADE Consulting Group Pty Ltd

Prepared and issued by:

Reviewed by:

Karin Azzam

Sam Goldsmith
Environmental Consultant

Senior Environmental Consultant

Executive Summary

Background and Objective

ADE Consulting Group Pty Ltd (ADE) was engaged by Department of Education (DoE) to undertake a Detailed Site Investigation (DSI) to investigate the nature and extent of potential contamination (if any) within a portion of land for the upgrade to Cammeray Public School (the "site").

This DSI has been prepared to support a Review of Environmental Factors (REF) for the Department of Education (DoE) for the upgrade of the Cammeray Public School (the "proposed activity"). The purpose of the REF is to assess the potential environmental impacts of the activity prescribed by State Environmental Planning Policy (Transport and Infrastructure, 2021) as "development permitted without consent" on land carried out by or on behalf of a public authority under Part 5 of the Environmental Planning and Assessment Act 1979 (EP&A Act).

The objectives were to assess whether contamination has the potential to exist in the investigation area and whether further investigation or future management is necessary to facilitate the suitability for the proposed activity and to provide indicative waste classification advise for soil material surplus to requirement during the proposed development.

Scope of Works

The scope of work consisted of:

- Preliminary works including a review and summary of the findings from the preliminary site investigation undertaken by ADE in 2023 (ADE, 2023) and development of a soil sampling plan.
- Site inspection and an intrusive investigation including the advancement of 5 boreholes was completed on 12 January 2024 across the investigation area using a mechanical drilling rig to enable assessment of the subsurface lithology and collection of representative soil samples for laboratory analysis.
- The excavation of 5 test pits by mechanical excavator and gravimetric asbestos assessment was completed on 26 April 2024.
- The installation of 3 soil vapour bores on 24 April 2024 and soil vapour sampling on 2 May 2024.
- Data evaluation and provision of this DSI report with findings and recommendations from the assessment.

Summary of key findings

- The investigation area has formed part of Cammeray Public School since 1915. The investigation area
 and immediate surroundings appeared to have been levelled to form part of a tennis court in the
 1990s. The area surrounding the investigation area was developed with new classrooms (permanent
 and demountable) in the early 2000s with a demountable classroom present in the southeast corner
 of the investigation area.
- The investigation area is underlain by shallow fill (pavement and sand) with natural sand below from approximately 0.3 to 0.6 metres below ground level (mBGL) and weathered sandstone bedrock encountered from between 0.6 and 1.0 mBGL.
- Analytical soils results were reported below the investigation area assessment criteria considering the
 on-going use of the investigation area as part of a primary school with marginal exceedances of CT1
 criteria for general solid waste within the shallow fill.

 Analytical soil vapour results were reported below adopted criteria for all analytes and below LOR for the majority of analytes.

Conclusions and Recommendations

Based on the analytical results collected from soil samples analysed across the investigation area, the soils present a low risk of contamination and are considered chemically suitable for the proposed activity and ongoing land-use as a primary school.

The soil vapour assessment indicates that the UPSS within upgradient service station has not contaminated the environment as to present a potential risk to sensitive receptor and any potential risk linkage is considered incomplete.

ADE considers the investigation area suitable for the proposed activity with no further investigation needed.

Mitigation Measures

The recommended mitigation measures are:

- Develop and prepare an unexpected finds protocol to be implemented during the demolition and construction phase of the activity.
- Develop and prepare a soil and water management plan/ sub-plan to prevent erosion and generation of sediment.
- Develop and prepare a construction environmental management plan to be implemented during the course of demolition and construction phase of the activity.
- Ensure all soil to be removed from the site as waste is classified in accordance with NSW EPA (2014) prior to leaving the investigation area.

Contents

1	Intr	oduction	1
	1.1	Background	1
	1.2	Proposed Activity	2
	1.3	Objectives	2
	1.4	Scope of Work	2
	1.5	Legislation, Guidelines and Codes of Practice	3
	1.6	REF Review Checklist	4
2	Site	Identification and Condition	6
	2.1	Site Location	6
	2.2	Summary of Site Details	6
	2.3	Surrounding Features	6
	2.4	Environmental Setting	7
	2.5	History	8
	2.6	Previous Environmental Investigation	8
3	Prel	liminary Conceptual Site Model	9
	3.1	Potential sources of contamination	g
	3.2	Chemicals of potential concern	g
	3.3	Exposure pathways	10
	3.3.1	Human	10
	3.3.2	2 Ecological	10
	3.4	Sensitive receptors	10
	3.5	Source to receptor linkages	10
4	Data	a Quality Objectives	12
	4.1	Step 1 – State the Problem	12
	4.2	Step 2 – Identify the Decision/ Goals of the Study	13
	4.3	Step 3 – Identify Information Inputs	13
	4.4	Step 4 – Define Boundaries of the Study	13
	4.5	Step5 – Develop a Decision Rule	14
	4.6	Step6 – Specify Acceptable Limits on Decision Errors	14
	4.7	Step 7 – Optimise the Design for Obtaining Data	15
5	Inve	estigation Methodology	16
	5.1	Preliminary Items	16
	5.2	Soil Sampling	16
	5.2.1	Borehole Assessment	16
	5.2.2	Test Pit Sampling Methodology	17
	5.3	Soil Vapour Assessment	17
	5.3.1	Soil Vapour Well Installation	17

	5	5.3.2	Soil Vapour Sampling	18
	5.4		Oocumentation	19
	5.5	L	aboratory Analysis	19
	5	5.5.1	Soil	19
	5	5.5.2	Soil Vapour	21
6	S	Site A	Assessment Criteria	22
	6.1	S	ioil Assessment Criteria	22
	6	5.1.1	Health Investigation Levels (HILs)	22
	6	5.1.2	Health Screening Levels (HSLs)	23
	6	5.1.3	Asbestos	24
	6	5.1.4	PFAS	24
	6	5.1.5	Management Limits	24
	6.2	A	Aesthetics	25
	6.3	٧	Vaste Classification Guidelines	25
	6.4	S	itatistical Treatment	26
	6.5	S	oil Vapour Assessment Criteria	27
7	F	Resul	ts	28
	7.1	F	ield observations	28
	7	7.1.1	Features	28
	7	7.1.2	Soil profile	28
	7.2	S	oil Analytical Results	29
	7	7.2.1	Site Assessment Criteria	29
	7	7.2.2	Waste Classification	29
	7.3	S	oil Vapour Analytical Results	30
	7.4	(Quality Assurance and Quality Control	31
8		Discu	ssion and Revised Conceptual Site Model	32
	8.1	A	Aesthetics	32
	8.2	S	Goil	32
	8.3	S	Soil Vapour	32
	8.4	F	Revised Risk Linkage Evaluation	32
9	C		lusion and Recommendations	
1			ation Measures	
1		_	ations and Disclaimer	
			ances	33

Tables

Table 1: Scope of Works	2
Table 2: REF Review Checklist Relevant Items	
Table 3: Summary of Site Details	е
Table 4: Summary of Surrounding Site Uses	е
Table 5: Physical Setting	7
Table 6: Preliminary Source Pathway Receptor Analysis	11
Table 7: Summary of the Study Boundaries.	14
Table 8: Summary of Weather Observations	19
Table 9: Summary of analytical schedule	21
Table 10: Health Investigation Levels for Soil Contaminants	22
Table 11: Health Investigation Levels for Soil Contaminants - PAH species	23
Table 12. Health screening levels for soil contaminants	23
Table 13. Health screening levels for asbestos contamination in soil	24
Table 14. Summary of the adopted assessment criteria for PFAS in soil	24
Table 15. Management limits for TRH fraction in soil	25
Table 16: NSW EPA (2014) Waste Classification Guidelines	26
Table 17: Adopted ASC NEPM (2013) Interim Soil vapour HILs	27
Table 18: Adopted ASC NEPM (2013) HSL for Vapour Intrusion	27
Table 19. Ground Model	28
Table 20: Exceedances for CT1 criteria for general solid waste	29
Table 21: Soil Vapour Results above Reporting Limits	30
Table 22: Summary of Potential Risks and Mitigation Measures	34

Figures

Figure 1. Site Locality

Figure 2. Investigation Locations

Appendices

Appendix A: Proposed Building Footprint

Appendix B: Photographs

Appendix C: Borehole and Test Pit Logs
Appendix D: Soil Vapour Field Records
Appendix E: PID Calibration Certificate
Appendix F: Results Summary Tables

Appendix G: Analytical Reports and Chain of Custody

Appendix H: Data Quality Evaluation

Appendix I: RPD calculations

Abbreviations

Abbreviation	Definition
ACM	Asbestos Containing Material
ADE	ADE Consulting Group Pty Ltd
AHD	Australian Height Datum
AS	Australian Standard
BGL	Below Ground Level
BR	Blind Replicate
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes
СоС	Chain of Custody
CoPCs	Contaminants of Potential Concern
CSM	Conceptual Site Model
DEC	Department of Environment and Conservation
DP	Deposited Plan
BYDA	Before You Dig Australia
DQO	Data Quality Objectives
DSI	Detailed Site Investigation
EILs	Ecological Investigation Levels
EPA	Environment Protection Authority
ESLs	Ecological Screening Levels
HILs	Health Investigation Levels
HSLs	Health Screening Levels
LEP	Local Environmental Plan
LGA	Local Government Area
m BGL	meters Below Ground Level
NATA	National Association of Testing Authorities
NEPC	National Environmental Protection Council
NEPM	National Environmental Protection Measure
NSW	New South Wales
NSW EPA	New South Wales Environment Protection Authority
OPPs	Organophosphorus Pesticides
OCPs	Organochlorine Pesticides
PAHs	Polycyclic Aromatic Hydrocarbons
PFAS	Per-fluoroalkyl substances
PQL	Practical Quantification Limit
PSI	Preliminary Site Investigation
QA/QC	Quality Assurance/Quality Control
RPD	Relative Percent Difference
SAC	Site Assessment Criteria

1 Introduction

ADE Consulting Group Pty Ltd (ADE) was engaged by the Department of Education (DoE) to perform a targeted Detailed Site Investigation (DSI) within a section of land at Cammeray Public School (CPS).

This DSI has been prepared to support a Review of Environmental Factors (REF) for the Department of Education (DoE) for the upgrade of the CPS (the "proposed activity"). The purpose of the REF is to assess the potential environmental impacts of the activity prescribed by State Environmental Planning Policy (Transport and Infrastructure, 2021) as "development permitted without consent" on land carried out by or on behalf of a public authority under Part 5 of the Environmental Planning and Assessment Act 1979 (EP&A Act).

The proposed activity is for upgrades to the existing CPS at 68 Palmer Street, Cammeray NSW 2062 (the site).

The area of the proposed activity (investigation area) measures approximately 300 m² and is located in the central west portion of the site. Plans showing the footprint of the proposed new building are presented in **Appendix A**. The investigation area is situated within the Local Government Area (LGA) of North Sydney and is zoned as SP2 – infrastructure "Educational Establishment". The investigation area is legally defined as:

- Part Lot 1 DP123406; and
- Part Lot 4 DP571310.

The site and investigation area are shown in **Figure 1** at the end of this report.

1.1 Background

The site is located at 68 Palmer Street, Cammeray on the northern side of Palmer Road, bound by Palmer Street to the south, Bellevue Street to the east and Miller Street to the west. The site has an area of 1.36 ha and comprises 11 allotments, legally described as:

- Lot 11 DP 837836
- Lot 1 DP 316130
- Lot 1 DP 316706
- Lot 1 DP 123406
- Lot 2 DP 174370
- Lot 1 DP 174370
- Lot 4 Sec 35 DP 758790
- Lot 5 Sec 35 DP 758790
- Lot 66 DP 1049613
- Lot 3 DP 571310
- Lot 4 DP 571310

The site currently comprises an existing co-education primary public school with 6 permanent buildings, 3 demountable structures, covered walkways linked at multiple levels, play areas, on-grade parking, sports court, covered outdoor learning area and vegetation/green spaces with mature trees. The existing school buildings are clustered towards the southern portion of the site and comprise both single and 2 storey buildings. The northern portion of the site contains the sports court, vegetable garden and play equipment.

The north-western portion of the site is heavily vegetated with trees of high landscape significance that are protected with fencing.

The site is identified as a locally listed heritage item (I0019) under Schedule 5 Environmental Heritage pursuant to the North Sydney Local Environmental Plan 2013 (NSLEP). The school is also identified in the Plateau Heritage Conservation Area (Part 2 Schedule 5 of the NSLEP). The school is listed on the Department of Education (DoE) Section 170 Heritage Conservation Register as 'Cammeray Public School'. The site is approximately 115 m from a State heritage item (I0004) being the electricity substation at 143 Bellevue Street and in close proximity to locally heritage listed items.

1.2 Proposed Activity

The proposed activity involves upgrades to the existing school, including the following:

- Construction of 4 new permanent teaching spaces in a two-storey building incorporating 2 general learning spaces and 2 practical activity areas
- New egress lift and stairs for access to all building levels
- External covered walkways connecting the new building to the existing school network
- Landscaping and external works including compensatory planting
- Upgrades to site infrastructure and services to support the new buildings
- Removal of 3 temporary (demountable) classrooms from the eastern side of the school
- 50 bicycle parking spaces

The intent of the activity is to provide 4 permanent teaching spaces (PTS) and 2 practical activity areas (PAA) across a two-storey addition, adjoining Building E. This will result in Cammeray Public School retaining the capacity of a 'large' school (553-1,000 students) under EFSG (SINSW Education Facilities Standards and Guidelines).

1.3 Objectives

The objective of this targeted DSI is to

- Determine whether contamination exists within the investigation area at levels that warrant
 additional investigation or necessitate future management actions to ensure suitability for the
 proposed activity.
- Provide indicative advice regarding the off-site management of material which may be surplus to requirements, in accordance with NSW Environment Protection Authority (EPA) (2014) Waste Classification Guidelines: Part 1 Classifying Waste (the "Waste Guidelines")

1.4 Scope of Work

The scope of works undertaken to achieve the project objectives, are summarised in **Table 1** below.

Table 1: Scope of Works

Phase of Work	Detail
Preliminary Works	 Desktop review and summary of the findings from the preliminary site investigation undertaken by ADE (ADE, 2023).
	Obtain and review Before You Dig (BYD) documentation.

Phase of Work	Detail
	 Develop and sign onto a job specific Safety, Health & Environmental Work Method Statement (SH&EWMS).
	 Conducting scan for underground services, supervising a qualified/licenced utility search subcontractor to mark-out safe locations for intrusive assessment.
Intrusive Soil Investigation	 Inspection to identify features and any potential activities of environmental concern including evidence of contaminating uses and/or contamination (e.g. staining, odours), potential asbestos-containing materials (PACM etc
	 Intrusive soil investigation comprising:
	 Advancement of 5 soil boreholes using a tracked drilling rig to a target depth of 1.5 m to enable assessment of the subsurface lithology and collection of representative soil samples.
	 Excavation of 5 shallow test pits to a maximum depth of 0.8 m for qualitative quantification of asbestos
	 Logging of surface and subsurface soil material, including indications of visual / olfactory contamination and/or asbestos.
Soil Vapour	 Drilling of three soil bores and installation of three soil vapour wells.
Investigation	Sampling of soil vapour wells.
Laboratory Analysis	 Submission of selected representative soil samples to laboratories accredited with the National Association of Testing Authorities (NATA) under Chain of Custody Documentation for commonly occurring environmental contaminants of concern (COPC) and asbestos.
	 Submission of soil vapour samples (transported in Silonite Mini-Cans) to SLS, a NATA accredited laboratory for TO15 volatile organic compounds (VOC) and total recoverable hydrocarbons (TRH).
Data Assessment	 Data evaluation and provision of this targeted DSI report with findings and recommendations from the assessment including:
	 Summary of results of field and laboratory assessment compared to adopted 'Tier 1' criteria.
	 Update of the preliminary CSM for contamination, highlighting any completed risk linkages that still may exist.
	 Conclusion on the suitability of the investigation area for ongoing use as a primary school and contamination risk status of proposed activity with provision of preliminary waste classification advice for fill and natural material.
	 Provision of mitigation measures for additional assessment required to fill information / data gaps, or remediation planning (if required).

1.5 Legislation, Guidelines and Codes of Practice

The legislative framework for the report is based on guidelines that have been issued and/or endorsed by the NSW EPA, formerly the Office of Environment and Heritage under the following Acts/Regulations:

- Contaminated Land Management Act 1997
- Environmental Planning and Assessment Act 1979
- Protection of the Environment Operations Act 1997 and

State Environmental Planning Policy (SEPP) (Resilience and Hazards) 2021.

The relevant guidelines issued under the provisions of the Acts/Regulations include:

- Department of Environment, Climate Change and Water (DECCW) (2010) Vapour Intrusion: Technical Practice Note
- Department of Health (DoH) (2017) Health Based Guidance Values for PFAS for Use in Site Investigations in Australia (April 2017).
- Guidance for the Preparation of Standard Operating Procedures for Quality-Related Documents (EPA QA/G-6)
- Guidance on Data Quality Indicators, EPA QA/G-5I
- Guidelines for the NSW Site Auditor Scheme (3rd Edition), NSW 2017
- Guidelines on the Duty to Report Contamination (2015) under the Contaminated Land Management Act 1997
- Guidance for the Data Quality Objectives Process (EPA QA/G-4)
- Guidance for Data Quality Assessment: Practical Methods for Data Analysis (EPA QA/G-9)
- NSW EPA Contaminated Land Guidelines: Sampling Design Part 1 Application (NSW EPA 2022)
- National Environmental Protection Council [NEPC]. (2013). National Environmental Protection Measure 1999, 2013 Amendment (ASC NEPM, 2013)
- New South Wales Environmental Protection Authority [NSW EPA]. (2020). Consultants reporting on contaminated land - Contaminated Land Guidelines (NSW EPA, 2020)
- The Heads of EPAs Australia and New Zealand [HEPA]. (2020). PFAS National Environmental Management Plan Version 2.0, dated January 2020 (HEPA, 2020).
- WA Department of Health (DoH, 2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Site

It is noted that WA DoH (2009) was superseded by an update in 2021, however NSW EPA have not endorsed this update and supplied a position statement for guidance (NSW EPA, 2023).

Australian Standards applied to this investigation:

- Australian Standard AS 4482.1 Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds (Standards Australia, 2005).
- Australian Standard AS 4482.2 Guide to the sampling and investigation of potentially contaminated soil. Part 2: Volatile substances, (Standards Australia, 1999)
- Standards Australia Australian Standard AS4964-2004: Method for the qualitative identification of asbestos in bulk samples (Standards Australia, 2004) and

The following local government plan has also been taken into consideration for preparation of this targeted DSI:

North Sydney Local Government Environmental Plan (NSLEP) 2013.

1.6 REF Review Checklist

The following REF Review Checklist items provided by DoE (and relevant to this report) have been presented in **Table 2** below.

Table 2: REF Review Checklist Relevant Items

Table 2. Itel Neview Checklist Nelevant Iteliis				
ltem	Comment			
Details of:				
- The proposed activity.	Section 1.2			
 Relevant legislation and policies. 	Section 1.5			
- Relevant plans	Appendix A			
A description of the investigation area and surrounding environment.	Section 2.1, Section 2.2 and			
	Section 2.3			
Address all the potential sources of contamination mentioned	Section 3 and Section 8			
Summarise investigations undertaken and conclude that contamination risk	Executive Summary, Section 5 and			
has been appropriately addressed.	Section 8			
Preparation of a DSI that details the contamination risk and suitability for the	Section 9			
site for the proposed activity.	Section 9			
Mitigation measures recommended	Section 12			

2 Site Identification and Condition

2.1 Site Location

Cammeray Public School is located at 68 Palmer Street, Cammeray NSW and covers an approximate area of 1.35 ha. For the proposed activity, the investigation area is limited to a targeted area of asphalt play court on in the western side of Cammeray Public school, immediately east of the Miller Street entrance gate. Refer to **Figure 1** for site locality and **Figure 2** for investigation area boundary and investigation locations.

2.2 Summary of Site Details

Table 3: Summary of Site Details

Item	Details			
Site address:	68 Palmer Street Cammeray, NSW			
Title identification:	Lot 11 DP 837826	Lot 2 DP 174370	Lot 66 DP 1049613	
	Lot 1 DP 316130	Lot 1 DP 174370	Lot 3 DP 571310	
	Lot 1 DP 316706	Lot 4 Sec 35 DP 758790	Lot 4 DP571310	
	Lot 1 DP 123406	Lot 5 Sec 35 DP 758790		
Investigation Titles Part of Lot 1 DP 123406 and Part of Lot 4 DP571310				
Investigation area:	Approximately 300 m ²			
Council Area:	North Sydney Council			
Land Use Zoning:	SP2 Educational Establishment			
Current Site Owner:	Department of Education NSW			
Current Land Use:	Educational purposes/school (primary school)			
Future Uses:	Educational purposes/school (primary school)			
Local Environmental Plan	North Sydney Local Government Environmental Plan (NSLEP) 2013			

2.3 Surrounding Features

Table 4: Summary of Surrounding Site Uses

Site Surrounds	Description
North	The Cammeray Public School oval, low density residential housing up until Pine Street.
East	Cammeray Public School classrooms followed by Bellevue Street and low density residential properties.
South	Palmer Street lies immediately south followed by a local petrol station with a nearby tyre shop and other smaller commercial establishments.
West	Miller Street lies immediately east followed by low density residential properties.

2.4 Environmental Setting

Table 5: Physical Setting

Item	Detail
Topography	The local topography of the site sits at an elevation of approximately $30-35$ metres above Australian Height Datum (mAHD). The investigation area appears artificially flattened, as a result of the development of the play area.
Drainage	Based on the inspection undertaken at the time of investigation, stormwater drains were observed on nearby buildings where water would flow directly into the soil. Rainwater is considered likely to collect in gutters and downpipes, followed by pooling on the ground surface, then vertical percolation through the topsoil and underlying residual soil materials. Rainwater transported through overland flow is likely to be transported along local roads and stormwater pipes towards the northwestern portion of the site.
Nearest surface water feature	Flat Rock Creek is located 200 m west and Willoughby Creek is located 700 m to the south east. Other notable nearby water features include Flat Rock Gully to the North and Middle Harbour to the east.
Hydrogeology & Groundwater	A search for registered groundwater wells undertaken by Land Insight Resources indicated no registered groundwater wells within one km radius of the site (refer to ADE PSI, 2023)
Local geology and soil	The site forms part of the Gymea/Lambert Soil landscape. The Lambert soil landscape is characterised by undulating rises to rolling hills with slopes <20% local relief between 20-120m and elevation between 6 and 610m. Soils typically consist of well-drained brown and yellow-Orthic Tenosols and brown Kandosols at shallow depths. The soils comprise well drained Leptic Rudosols and moderately deep depths (50-100cm) the soil typically consists of imperfectly drained yellow podzolic soils. The Gymea landscape comprises undulating to rolling hills with a local relief 20-80m and slopes from 10-25%. The soils typically consist of yellow earths and earthy sands on crests and inside benches, shallow regions consist of siliceous sands and yellow podzolic soils. Dominant soil materials include loose, coarse sandy loam, earthy, yellowish-brown clayey sand, yellowish-brown sandy clay loam and yellowish-brown clay. The regional geology underlying the site comprises Hawksbury Sandstone, part of the ungrouped Triassic units. The dominant lithology is sandstone which comprises medium-to coarse grained quartz sandstone with minor shale and laminate lenses, as per the 1:100 000 Sydney Geological Map.
Acid sulfate soil risk	ADE undertook a review of the department of Planning, Industry and Environment's <i>Environmental Planning Instrument – Acid Sulfate Soils</i> to establish the potential for Acid Sulfate Soil (ASS) at the site. The site was classified as having a low probability of occurrence. Furthermore, the Australian Soil Resources Information System (ASRIS) lists the sites acid sulfate soil risk classification as being 'low probability of occurrence' (refer to ADE,2023).

2.5 History

The site is known as Cammeray Public School and was originally called Suspension Bridge Public School, opened in 1915. Since then, the site has been used for educational purposes until the current date. Throughout this time the school has gradually developed new structures across most of the site. Notably, 10 new classrooms were built in 2004, new play equipment and landscaping has been added as well as a canteen upgrade in 2020. The surrounding area has also seen significant developments, most notably being the addition of the M1 Warringah Freeway to the south. Historically, surrounding gulleys and low-lying areas have been used as landfill and sandstone quarries.

Forming part of the school, the investigation area and location of the proposed activity appeared to have remained part of a vegetated sloping playground until 1990s when it appears to have been levelled and formed part of hardstand tennis court. The area around the investigation area was developed with classrooms, including the demountable classroom present on site, in the early 2000s.

2.6 Previous Environmental Investigation

A preliminary site investigation (PSI) was undertaken by ADE in 2023 for Cammeray Public School with findings reported in ADE (2023) Preliminary Site Investigation – Cammeray Public School, 68 Palmer St, Cammeray NSW (ref: A101023.0722_Cammeray PSIC_v1f; 30 November 2023).

The PSI included a review of desktop information, a site walkover inspection, an assessment of potential areas and sources of on-site and off-site contamination and potential risk from contamination (if any) in view of the proposed activity, as well as recommendations for further investigations where necessary.

Main findings of the report included:

- There have been occurrences in 2011 and 2013 of bonded asbestos containing material (ACM) found
 on exposed ground surface in the northeast corner of the school grounds as documented in WSP
 (2020) Cammeray Public School Asbestos in Grounds Management Plan, dated 25 June 2020. The
 areas were remediated by "sparrow-picking" visible ACM fragments found on exposed ground
 surface.
- No signs of gross contamination were identified on site during the site walkover inspection.
- A potential off-site source of petroleum hydrocarbon contamination was identified the form of a service station and motor vehicle repair shop located approximately 90 m to the south of the investigation area. A review of the current NSW EPA register of sites notified under Section 60 of the CLM Act reported that the service station is listed as 'regulation under CLM Act not required' by the NSW EPA.

The report concluded that:

- There has not been any historic finding of asbestos along the western portion of the school grounds and in the vicinity of the proposed activity. Therefore, historic asbestos finds in the northeast corner of the school grounds poses a low risk to the proposed activity.
- Whilst the service station is not regulated under CLM Act by the NSW EPA, there is a potential risk for petroleum hydrocarbons (associated with leaks and spills from fuel infrastructure) to have migrated onto site, via underlying groundwater.
- The PSI recommended that a Detailed Site investigation was carried out to refine the conceptual site
 model and assess the potential for contamination to be present within soils in the area of proposed
 activity.

3 Preliminary Conceptual Site Model

A conceptual site model (CSM is an iterative method required by ASC NEPM (2013) to allow the risks from potential contamination as a result of historic site uses or activities to be characterised with regard to the likely exposure of sensitive receptors. The CSM defines the potential sources of contamination, the methods/ pathways through which exposure/ migration may occur and the receptors (human and environmental) that may foreseeably be exposed to contamination.

Where any of the source, pathway or receptor is missing, then the risk linkage status can be considered incomplete, and there is no unacceptable risk.

3.1 Potential sources of contamination

In view of the proposed activity, the following potential contamination sources were identified during the PSI (ADE, 2023)

- Potential for contamination via imported fill materials of unknown origin used in the construction of the classrooms in the past.
- Offsite service station (90 m south of site) Potential impact from primary sources of petroleum hydrocarbon impact from underground petroleum storage systems (UPSS) (namely underground storage tanks (USTs), fuel suction lines, bowsers).

3.2 Chemicals of potential concern

The Chemicals of Potential Concern (CoPCs) were primarily selected for due diligence and the number of sensitive receptors on and off site. The CoPCs were chosen to represent a wide range of potential environmental contamination and, ensuring the most vulnerable individuals are adequately protected from potential health risks.

- Total recoverable hydrocarbons (TRHs);
- Benzene, toluene, ethylbenzene and xylenes (BTEX);
- Polycyclic aromatic hydrocarbons (PAHs);
- Polychlorinated biphenyls (PCBs);
- Organochlorine and organophosphorus pesticides (OCPs/OPPs);
- Heavy metals;
- Phenols;
- PFAS
- Asbestos

3.3 Exposure pathways

3.3.1 Human

The potential pathways by which contamination could reach potential human receptors are considered to be:

- Direct contact (dermal).
- Ingestion.
- Inhalation of volatilised organic compounds which migrate through soil pore spaces.

3.3.2 Ecological

Due to the proposed construction of new structures in the investigation area and the current asphalt hardstand surfaces, the potential for ecological receptors to be present within the investigation area was low. While minor plant root growth may occur, this was not considered to result in potential for significant ecological receptors.

3.4 Sensitive receptors

Potential human receptors for the investigation area include:

- Current and future users including students and staff; and
- Residents of neighbouring properties and surrounding users;
- Construction / landscaping workers involved with any future works onsite;
- Current and future maintenance workers undertaking subsurface maintenance works.

No ecological receptors were identified considering the proposed activity in the investigation area.

3.5 Source to receptor linkages

The risk linkage status between the potential sources of contamination and sensitive receptors was summarised within **Table 6**.

For the purpose of this report, the following qualitative risk assessment has been applied:

- Low Risk the activities and related CoPC are likely to pose no or a low potential human health/environmental impact. Any impact is likely localised to a specific area of the investigation area;
- Moderate Risk the activities and related CoPC are likely to pose potential for moderate human health/environmental impact. Any impact is likely localised to a specific area of the investigation area; and
- High Risk the activities and related CoPC could pose a significant environmental impact. There is
 potential for impacts of the immediate local area of the investigation area or off-Site migration
 impacting surrounding human and/or environmental receptors.

Table 6: Preliminary Source Pathway Receptor Analysis

Potential contamination sources and CoPC	Exposure Pathways	Receptor	S-P-R Linkage – risk status	Notes
Onsite				
Hazardous building Materials ACM used in current structures and use of lead based paint. Asbestos, heavy metals	Human - Dermal contact, ingestion, inhalation	Human – current and future users, primary school children, teachers, workers neighbours & visitors	Potentially complete - Low Risk	Source can be from uncontrolled fill or historical demolition of buildings; this can impact the top layer of the soil and potentially be interacted with if the soil is exposed to receptors within the school.
Potential uncontrolled fill material Uncontrolled imported fill potentially during the construction of current structures Heavy metals, TRH, BTEX, PAH, pesticides, asbestos	Human - Dermal contact, ingestion, inhalation	Human – current and future users, primary school children, teachers, workers neighbours & visitors	Potentially complete - Low Risk	Uncontrolled fill may have been used to level parts within the investigation area or placed underneath the asphalt within the investigation area. Potential linkage present in areas where levelling or building construction present. If contamination is present direct contact with impacted soil can affect receptors within the school.
General pest control and pesticides that could have been sprayed or injected on or underneath concrete slabs. OCPs, OPPs, Arsenic	Human - Dermal contact, ingestion, inhalation	Human – current and future users, primary school children, teachers, workers neighbours & visitors	Potentially complete- low-moderate Risk	General gardening and upkeep of the investigation area presents a risk of pesticide contamination. Potentially linkage present, investigation area is covered in gardens and vegetation which historically could have been subject to pesticide use. If contamination is present direct contact with impacted soil can affect receptors within the school.
Offsite				
UPSS within adjacent offsite service station Coles Express Cammeray, 477-483 Miller Street Petroleum hydrocarbons (TRH <c16), btex,<br="">naphthalene and lead.</c16),>	Human - Dermal contact, ingestion, inhalation Volatilisation and migration of vapours into indoor airspaces	Human – current and future users, primary school children, teachers, workers neighbours & visitors	Potentially complete- low- moderate Risk	A review of the current NSW EPA register of sites notified under Section 60 of the CLM Act show that regulation is not required under the CLM Act for the service station. The NSW EPA is satisfied that risk(s) posed by petroleum hydrocarbons to onsite / offsite receptors is currently being managed appropriately. Available information indicates that it has not contaminated the environment as to present a potential risk to sensitive receptor, however without specific details, the risk linkage status cannot be considered incomplete.

4 Data Quality Objectives

The investigative works were designed using data quality objectives (DQO) generated per NEPM National Environment Protection (Assessment of Site Contamination) Measure (1999), 2013 Amendment (NEPC, 2013) and Australian Standard (AS) 4482.1 (2005).

The DQO process consists of a seven-step planning approach to facilitate the development of qualitative and quantitative statements that specify the quality of the data required to support decision making within the scope of the investigation. This process utilises systematic planning and statistical hypothesis testing to differentiate between two or more clearly defined alternatives.

4.1 Step 1 – State the Problem

- In order to accommodate student demand, the DoE need to build additional permanent classrooms at Cammeray Public School, located at 68 Palmer Street Cammeray, NSW. A targeted DSI is required to fulfill due diligence requirements to determine whether contamination exists within the footprint of the proposed new building (investigation area) at levels that warrant additional investigation or necessitate future management actions to ensure suitability for the proposed activity.
- Planning team comprise: DoE (Client) and ADE Consulting Group (site contamination assessment consultant)

Summary of Conceptual Site Model:

A preliminary conceptual site model (CSM) was developed by ADE (ASE 2023) as part of the PSI, and is summarised below.

- **Sources** Preliminary site investigation by ADE (ADE 2023) identified the following potential sources of contamination:
 - Imported fill materials of unknown origin used in levelling and formation of the investigation area surface within the area of proposed activity.
 - General pest control and pesticides that could have been sprayed or injected on or underneath concrete slabs.
 - Offsite service station and motor vehicle workshop located approximately 90 m to the south.
- Contaminants of Potential Concern (COPC): COPC associated with the identified onsite potential sources of contamination are predominantly top down sources of contamination and include commonly occurring environmental contaminants of concern, including
 - Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc);
 - Total recoverable hydrocarbons (TRHs),
 - Benzene, toluene, ethylbenzene and xylenes (BTEX);
 - Polycyclic aromatic hydrocarbons (PAHs);
 - Polychlorinated biphenyls (PCBs);
 - Organochlorine and organophosphorus pesticides (OCPs/OPPs);
 - Phenols;
 - Polyfluoroalkyl substances (PFAS)

- Asbestos
- Receptors: Current and future users (staff, students and visitors), groundworkers, underlying
 groundwater and offsite residents. Due to the proposed construction of new structures at the
 investigation area and the current asphalt hardstand surfaces, the potential for ecological receptors
 to be present within the investigation area was low. While minor plant root growth may occur, this
 has not been considered to result in potential for significant ecological receptors.
- **Pathways**: dermal contact, ingestion, inhalation, leaching and migration via groundwater, migration via unsaturated zone
- Constraints: Sampling locations were constrained by access provisions for sampling equipment, underground services and existing buildings. The investigation was limited to the area of proposed activity.

4.2 Step 2 – Identify the Decision/ Goals of the Study

The overall objective of the investigation is to determine if the investigation area in its current state is suitable for the proposed activity. Additional questions to be considered in this decision are:

- Has the investigation area been appropriately characterised, with all data gaps addressed?
- What is the nature and extent of contamination within the investigation area?
- Is there any evidence of offsite migration of contaminants from the investigation area?
- Is there any risk to human health or the environment based on the data obtained from the DSI and in the context of the proposed use of the investigation area?
- Are remediation activities required to render the investigation area suitable for the proposed activity.

4.3 Step 3 – Identify Information Inputs

Information inputs required to resolve the goals of the study include:

 Soil and soil vapour data collected as part of this investigation, including field samples and analytical samples

Investigation criteria will be sourced from:

- National Environmental Protection Measure [NEPM] Schedule B1 (NEPC, 2013)
- NSW EPA, Waste Classification Guidelines. Part 1: Classifying Waste (NSW EPA, 2014)
- HEPA, PFAS National Environmental Management Plan (NEMP) v2.0 (HEPA, 2020)
- Department of Environment, Climate Change and Water (DECCW) (2010) Vapour Intrusion: Technical Practice Note

Sampling and analytical methods will be consistent with existing guidance, including NEPC 2013. Analytical laboratories will be NATA accredited.

4.4 Step 4 - Define Boundaries of the Study

The investigation boundaries are presented in **Table 7**.

Table 7: Summary of the Study Boundaries.

Spatial Boundaries	The lateral boundaries of the investigation area are illustrated in Figure 1
	(Appendix – Figures) and limited to:
	In situ soils across the investigation area
	Unsaturated soil zone
	The vertical boundary of the investigation to date within the investigation
	area is limited to in-situ soils extending from the fill to natural layer
	(approximately 0.1 – 1.5 m below ground level (bgl).
Sampling Unit	Sampling units will consist of:
	Field samples of appropriately described and logged samples which are field screened.
Temporal Boundaries	The investigation works were undertaken on 12 January 2024, 24 April 2024, 26
	April 2024 and 02 May 2024.
Investigation Limit	The limit of the investigation extent was defined by recommendations provided
	in the Preliminary Site Investigation and inspection (ADE, 2023).

4.5 Step5 – Develop a Decision Rule

The primary objectives of the proposed contamination investigation are to assess the potential for unknown contamination at the investigation area to present a risk in the proposed activity. The decision rules to assess the suitability of the investigation area will be as follows:

- QA/QC assessment indicates that the data is usable
- Samples will be submitted to NATA-accredited laboratories. The laboratories' analytical LORs are suitably below the adopted criteria
- If contaminant concentrations for each sample are **below** the adopted investigation levels, then no further assessment/remediation is required with respect to that chemical/media/area
- If contaminant concentrations are reported to **exceed** the adopted investigation levels, then additional investigation and/or management (including remediation) may be required

In considering whether, or not contaminant concentrations exceed investigation levels, statistical measures of central tendency will be used. The data evaluation will include:

- The 95% UCL arithmetic mean to be ≤ criterion
- No individual sample to exceed 250% of the criterion
- The sample standard deviation with be ≤50% criterion
- Additional considerations will include aesthetic requirements, including no odours or staining, no waste materials and no monolithic deposits as per NEPC 2013, B2.

4.6 Step6 - Specify Acceptable Limits on Decision Errors

There are two sources of error for input to decisions:

- Sampling errors, which occur when the samples collected are not representative of the conditions within the investigation area; and
- Measurement errors, which occur during sample collection, handling, preparation, analysis, and data reduction.

The null hypothesis for this study is:

• Contaminant concentrations within the soil, and soil vapour at the investigation area are above the adopted investigation levels.

These errors may lead to the following decision errors:

- Type I deciding that the risks posed by soil, sediment and groundwater within the investigation area are acceptable when these risks are not acceptable. The consequence of this error may be unacceptable impacts to human health, or the receiving environment; or
- Type II deciding that the risks posed by soil, sediment and groundwater within the investigation area are unacceptable when the risks are acceptable. The consequence of this error is that management actions will be undertaken to reduce risks that are not necessary.

The acceptable limit on decision errors is a 5% probability of a false negative (i.e. assessing that the average concentrations of CoPC are less than the adopted soil and groundwater investigation levels when they are greater than the investigation levels).

Where data sets are sufficiently populated, the 95% upper confidence limit (UCL) of the arithmetic mean will be used to calculate this probability. The 95% UCLs are to be less than the investigation level and standard deviation of the sample population shall be less than 50% of the investigation level.

4.7 Step 7 – Optimise the Design for Obtaining Data

Based on the findings of the PSI and the preliminary CSM, to address any potential risk linkages to sensitive receptors at the investigation area, the targeted DSI would include an intrusive investigation (borehole and test pit assessment) and a soil vapour investigation.

5 Investigation Methodology

5.1 Preliminary Items

Preliminary works included the following:

- Review and summarise the findings from the desktop study of the investigation area and in order to develop and sampling analysis plan.
- Preparation of safe work methods statement (SWMS) for fieldworks undertaken.
- Undertake a Before-You Dig-Australia (BYDA) online search of current utilities potentially running onto the investigation area.
- Conducting scan for underground services, supervising a qualified/licenced utility search subcontractor to mark-out safe locations for intrusive assessment.

5.2 Soil Sampling

For the intrusive soil contamination assessment, a systematic sampling regime was completed to collect representative samples from the lithology across the investigation area and to provide coverage. The distribution of individual sample locations was defined by on-site limitations and restrictions such as underground services, and the adopted lateral/vertical investigation limits.

A systematic sampling design with a combined 10 sampling locations including the 5 borehole locations and the 5 test pit locations allow the detection of a potential contamination hotspot of 6.5 m with 95% confidence according to the NSW EPA sampling design guidelines. This is greater than the minimum number of locations recommended, however the methodologies are split between boreholes and test pits with test pits being appropriate for assessing potential asbestos contamination. Samples were collected and selected for analysis across varying depths with soil lithologies, including imported fill materials and residual natural soil materials.

5.2.1 Borehole Assessment

The combined geotechnical and environmental intrusive investigation was conducted on 12 January 2024 by a qualified and suitably experienced environmental consultants from ADE. Photographs from the investigation are shown in **Appendix B** (Photograph 3-7). The components of the intrusive works relating to the environmental investigation are listed below.

- Supervision of drilling by a qualified subcontractor on 12 January 2024, advancing 5 boreholes using the continuous flight auger method into natural material to a maximum depth of 1.5 metres (m) below ground level (BGL) for a combined soil and geotechnical assessment (ID: BH01 – BH05).
- Samples of soil material were collected at each location which enabled assessment of material type, texture, moisture, inclusions and indications of visual / olfactory contamination. Subsurface observations were recorded on detailed bore logs, presented in Appendix C.
- Samples were collected in clean glass jars and bags supplied by the laboratory. The jars were filled to
 capacity to ensure minimal headspace was present and placed directly into a chilled esky for
 transportation to the laboratory.

- Semi-quantitative field screening for volatile organic compounds (VOCs) in soil was undertaken at
 each sampling location using a calibrated photo-ionisation detector (PID) device. Screening involved
 placing the soil sample in a resealable plastic zip lock bag, agitating the sample then inserting the PID
 tip into the headspace and recording the reading.
- Collection of one intra-laboratory duplicate and one inter-laboratory duplicate for quality assurance / quality control (QA/QC) purposes.

5.2.2 Test Pit Sampling Methodology

To improve the confidence in the assessment of any potential asbestos contamination, shallow test pitting was completed on 26 April 2024, supervised by a qualified and suitably experienced environmental consultant from ADE. Photographs from the test pit investigation are shown in **Appendix B** (Photograph 11 - 16). The following was completed:

- Supervision of test pitting by a qualified subcontractor, advancing 5 shallow test pits using a mechanical excavator into natural material, to a maximum depth of 0.8 mBGL (ID: TP01 – TP05).
- Asbestos sampling was undertaken at each test pit location using the gravimetric method to quantify weight / weight percentages (%w/w) as documented in the WA DoH (2021) and ASC NEPM (2013) guidelines., as follows:
 - 10L of soil materials were collected, weighed and screened for the presence/absence of bonded asbestos using a 7mm x 7mm sieve or manually sieved over a colour-contrasting plastic sheet.
 - If bonded asbestos fragments were identified/suspected during the screening process, they
 were collected and analysed to determine the percentage weight-by-weight concentration (%
 w/w) of asbestos for each sample.
 - 500 mL soil samples was then collected within medium zip lock bags and sent for analysis of asbestos fines (AF) and fibrous asbestos (FA)
- Subsurface observations such as material type, texture, moisture, inclusions and indications of visual / olfactory contamination were recorded on detailed test pit logs (Appendix C).

5.3 Soil Vapour Assessment

The soil vapour assessment was carried out in general accordance with (DECCW, 2010) Vapour Intrusion: Technical Practice Note.

Based on the findings in the preliminary CSM and the location of the potential off-site source (offsite service station to the south of the investigation area), 3 soil vapour bores were installed along the southern boundary of the investigation area, perpendicular to a potential pathway originating from the nearby service station.

Three soil vapour bores were considered to be suitable in order to identify any potential exposure pathways and health risks associated with the contamination to sensitive land users and to produce a sufficient data set that can be evaluated for consistency whilst ensuring samples are representative.

5.3.1 Soil Vapour Well Installation

The soil vapour installation was completed on 24 April 2024 supervised by a qualified and suitably experienced environmental consultant from ADE. Photographs from the soil vapour installation are shown in **Appendix B** (Photograph 7 - 10). The following was completed:

- Three soil bores were advanced to a maximum of 1.5 m BGL using a truck mounted geoprobe drill, along the southern boundary of the investigation area as shown on Figure 2. The soil vapour borehole locations were placed in an area completely covered with bitumen and were as such considered to provide an adequately representative measure of potential conditions beneath a building.
- A total of three soil vapour bores (ID: SV01, SV02 and SV03) were installed at an approximate depth of 1.4 m BGL.
- Stainless-steel soil vapour probes were installed into the base of the bore hole, with a 3-5 mm pea gravel installed to create a highly porous and permeable sample interval covering the probe and a further 50 mm. A narrow Teflon tube connected the probe to the surface, with a bentonite seal constructed within the bore annulus to prevent atmospheric interference during sampling.
- The soil vapour bores were finished with flush covers concreted into the ground and secured with bolts to prevent tampering and to allow sampling at a later date.
- The soil vapour bore (SVB) logs are presented in Appendix C.

5.3.2 Soil Vapour Sampling

Sampling of the three newly installed SVBs (SV01, SV02 and SV03) was completed on 02 May 2024, 8 days after the SVB installation to allow time for subsurface conditions to equilibrate.

The SVBs were purged and sampled in accordance with Department of Environment, Climate Change and Water (DECCW) (2010) Vapour Intrusion: Technical Practice Note, which outline the following methodology:

- Prior to sampling, each SVB was leak checked by enclosing the top with a shroud and flooding it with isopropyl alcohol.
- Volumes were purged from within the screen implant using a calibrated PID.
- Purged soil vapour was screened in the field using a PID for the presence of potential VOCs.
- Laboratory supplied 1.4 L Silonite Mini-Cans and sampling manifolds were pressure checked with an analogue pressure gauge prior to sampling.
- Teflon tubing from the SVB was then connected to the sampling manifold which was connected to 1.4 L Summa canister for sample collection.
- The canisters were monitored during sampling by using the dedicated analogue pressure gauge supplied by the laboratory to allow termination of sampling before the pressure within the canister reached zero, inch of mercury ("HG").
- Following sampling, the vacuum within cannisters was recorded to allow for comparison with the vacuum of the cannisters once received by the laboratory.
- The soil vapour samples in the Silonite Mini-Cans were sent to ALS, a NATA accredited laboratory for the analytes.
- Field records of purge time, volume removed, leak check, soil vapour sampling parameters (e.g. canister identity (ID), sampling Manifold ID, start and finish pressures, fill rate, purging and after purging parameters) and field observations are presented in **Appendix D**.

At shallow depths (<1 m) soil gas concentrations can be influenced by meteorological variations. Weather observations on the day of sampling and 2 days prior, were recorded using information gathered from the Bureau of Meteorology (BOM, 2024) and summaries in **Table 8** below.

Table 8: Summary of Weather Observations

Date	Time	Atmospheric Pressure (hPa)	Total rainfall (mm)	Windspeed (km/h)	Wind Direction	Temperature (°C)	Relative Humidity (%)
30/04/2024	9:00	1025.4	0	15	SSW	19	81
30,04,2024	15:00	1025.3	O	24	SSW	17.1	86
01/05/2024	9:00	1030.4	22.8	20	W	13.8	90
01/03/2024	15:00	1028.6	22.0	24	SSW	17.9	79
02/05/2024	9:00	1031.6	23.2	17	W	15	93
02/03/2021	15:00	1029.3	23.2	15	S	19.2	67

Notes

Daily Weather Observations available at http://www.bom.gov.au/nsw/observations/index.shtml (accessed 15/05/2024).

Temperature, humidity and rainfall observations from Sydney Observatory Hill (station 066214), atmospheric pressure from Sydney Airport AMO (station 066037) and wind observations from Fort Denison (station 066022).

5.4 Documentation

A field observation log was kept by sampling personnel during all phases of soil and soil vapour sampling. Details recorded in the log included:

- Borehole/monitoring well and sample number
- Soil profile notes
- Sampling method
- Sample identification
- Sample description
- Sample point measurements

A comprehensive master sample register was maintained. As samples were received, they were given a unique sequential number from the sample register into which details from the labels were entered. Before packing and dispatch of samples for analysis, a chain of custody (CoC) form was completed (refer to **Appendix G – Chain of Custody Documentation and Analytical Reports**). This form recorded details of the individual samples being dispatched and the type of analysis required for each sample.

5.5 Laboratory Analysis

5.5.1 Soil

Samples were transported to laboratories accredited with the National Association of Testing Authorities (NATA) for each analytical method used in chilled containers under full chain-of-custody documentation. Primary and the intra-laboratory duplicate soil samples were submitted to:

- Sydney Laboratory Services (SLS) Address: 4/10-11 Millennium Ct, Silverwater NSW 2128; and
- Envirolab Servies Sydney (Envirolab) Address: 12 Ashley St, Chatswood NSW 2067.

The inter-laboratory duplicate sample was submitted to Envirolab.

The primary soil samples were submitted for the following laboratory analysis:

- 10 soil samples submitted for:
 - Heavy metals (As, Cd, Cr_{TOTAL}, Cu, Hg, Ni, Pb and Zn).
 - Benzene, toluene, ethylbenzene and total xylenes (BTEX).
 - Total recoverable hydrocarbons (TRH) (Fractions C₆ C₄₀)
 - Polycyclic aromatic hydrocarbons (PAH).
 - Organochlorine pesticides / organophosphate pesticides (OCP/OPP).
 - Polychlorinated biphenyls (PCB).
 - Asbestos (presence / absence).
- 5 samples submitted for asbestos quantification in soil in accordance with WA DoH (2021) and ASC NEPM (2013) procedures.
- 3 soil samples submitted for per- and polyfluoroalkyl substances (PFAS).
- One sol sample was submitted for analysis to assist in deriving specific ecological investigation levels (EILs) for the investigation area including:
 - pH.
 - Electrical conductivity (EC).
 - Total Organic Carbon (%).
 - Cation Exchange Capacity (CEC).
 - Total iron (Fe).

One intra-laboratory duplicate, and one inter-laboratory duplicate sample were submitted QA/QC purposes for the full analytical suite detailed above with the exception of asbestos in soils, PFAS and EIL analytes. **Table 9** below show the sampling and analytical schedule.

Table 9: Summary of analytical schedule

Analytes	Number of primary samples analysed	Number of duplicate samples analysed
Heavy Metals *	10	2
ВТЕХ	10	2
TRH	10	2
PAH	10	2
OCP/ OPP	10	2
PCB	10	2
VOC	10	2
Asbestos +/-	10	-
Asbestos w/w	5	
PFAS	10	-
pH / EC	1	-
CEC	1	-
тос	1	-
Total Iron	1	-

Notes

Heavy Metals Arsenic, Cadmium, Copper, Chromium, Mercury, Nickel, Lead and Zinc

BTEX Benzene, toluene, ethylbenzene and total xylenes

TRH Total Recoverable Hydrocarbon
PAH Polycyclic Aromatic Hydrocarbons

OCP/OPP Organochlorine pesticides / Organophosphate pesticides

PCB Polychlorinated biphenyls
VOC Volatile organic compounds
Asbestos Asbestos (presence/absence) in soil

Asbestos w/w Asbestos quantification in soil in accordance with WA DoH (2021) and ASC NEPM (2013)

PFAS Per- and polyfluoroalkyl substances

pH/EC pH, Electrical conductivity
CEC Cation Exchange Capacity
TOC Total Organic Carbon

5.5.2 Soil Vapour

Samples were transported in Silonite Mini-Cans under full chain-of-custody documentation to ALS, a laboratory accredited with the National Association of Testing Authorities (NATA) for each analytical method used. Samples were submitted for analysis of TO15 VOCs (83 analytes) and BTEX

6 Site Assessment Criteria

The site assessment criteria (SAC) was developed as per the following environmental legislation, guidelines, code of practices and industrial advice:

- NEPC. (2013). The National Environmental Protection Measure (NEPM), 2013 Amendment (ASC NEPM, 2013)
- NSW EPA, Waste Classification Guidelines. Part 1: Classifying Waste (NSW EPA, 2014)
- HEPA, PFAS National Environmental Management Plan (NEMP) v2.0 (HEPA, 2020)

Based on the ongoing use of the investigation area as a primary school, the Tier 1 screening criteria for a land use scenario under NEPM (2013) for a "residential with garden access, including primary schools (HIL A)" were adopted to be most protective of the identified sensitive receptors. This report applies the relevant criteria investigation levels to identify contaminants and/or areas of contamination that potentially pose a risk to human or environmental health.

6.1 Soil Assessment Criteria

6.1.1 Health Investigation Levels (HILs)

The NEPM (2013) guidelines describes four broad land-use settings to assess potential human health risks for a broad range of metals and organic substances. These four HIL categories are used to assess human health risk via all relevant pathways of exposure for the following broad land use categories:

- HIL-A Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, no poultry, also includes children's day-care centres, preschools and primary schools)
- HIL-B Residential with minimal opportunities for soil access includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats
- HIL-C Public open space such as parks, playgrounds, playing fields (e.g., ovals), secondary schools and footpaths. It does not include undeveloped public open space (such as urban bushland and reserves), which should be subject to a Site-specific assessment where appropriate, and
- HIL-D Commercial/industrial such as shops, offices, factories and industrial sites.

Based on the available information, which includes the current land use as primary school, the HIL-A criterion has been adopted for screening purposes. A summary of the applicable HILs for soil is presented within **Table 10.**

Table 10: Health Investigation Levels for Soil Contaminants

Analyte	HIL A (mg/kg)
Arsenic (total)	100
Cadmium	20
Chromium (VI)	100
Copper	6,000
Lead	300
Mercury (inorganic)	40
Nickel	400
Zinc	7,400
Carcinogenic PAHs (as BaP TEQ¹)	3

Analyte	HIL A (mg/kg)
Total PAHs	300
Total PCBs	1
DDT+DDE+DDD	240
Aldrin and Dieldrin	6
Chlordane	50
Endosulfan	270
Endrin	10
Heptachlor	6
Hexachlorobenzene	10
Methoxychlor	300
Chlorpyrifos	160
Cyanide (free)	250
Phenols	3,000

Notes

Table 11: Health Investigation Levels for Soil Contaminants - PAH species

PAH species	TEF	PAH species	TEF
Benzo(a)anthracene	0.1	Benzo(g,h,i)perylene	0.01
Benzo(a)pyrene	1	Chrysene	0.01
Benzo(b+j)fluoranthene	0.1	Dibenz(a,h)anthracene	1
Benzo(k)fluoranthene	0.1	Indeno(1,2,3-c,d)pyrene	0.1

6.1.2 Health Screening Levels (HSLs)

Health screening levels (HSLs) have been developed for selected petroleum compounds and fractions and apply to human health risk assessment via inhalation and direct contact pathways. The HSLs depend on specific soil physicochemical properties, land use scenarios, and the characteristics of building structures. The soil texture for applications of HSLs at the investigation area is "sand".

ASC NEPM (2013).presents Tier 1 screening criteria for BTEX, naphthalene, TRH fractions C6-C10 and C10-C16 for vapour intrusion. Values for sand with depth criterion to < 1 metres was used. The HSL criteria are summarised in **Table 12**.

Table 12. Health screening levels for soil contaminants

Analyte	HIL A (mg/kg)
Benzene	0.5
Toluene	160
Ethylbenzene	55
Xylene	40
Naphthalene	3
TRH: C6 – C10(F1) ¹	45
TRH: C10 – C16 (F2)	110

Notes

1. To obtain F1, subtract the sum of BTEX from the C_6 - C_{10} fraction.

^{1.} Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF, given in the Table below, and summing these products.

6.1.3 Asbestos

NEPM (2013) provides specific guidance for the assessment of asbestos in soils, based on the WA DoH (2009). The DoH Guidelines identify three groups of asbestos contamination:

- ACM: asbestos which is bound in a matrix and cannot pass through a 7mm x 7mm sieve;
- **FA**: Friable asbestos material, such as severely weathered ACM and loose fibrous material such as insulation products. FA is defined as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure; and
- AF: includes free fibres of asbestos, small fibre bundles and ACM fragments that pass through a 7mm x 7mm sieve.

The analysis of asbestos samples must be undertaken by a NATA accredited laboratory in accordance with the analytical method outlined in Australian Standard (AS) 4964-2004, *Method for the qualitative identification of asbestos in bulk samples*. The health screening levels adopted for the purpose of this investigation are presented in **Table 13**.

Table 13. Health screening levels for asbestos contamination in soil

Analyte	HIL A (mg/kg)	
Bonded ACM ¹	0.01% w/w	
FA and AF (friable asbestos) ²	0.001% w/w	
All forms of asbestos	No visible asbestos for surface soil	

Notes

- 1. ACM Bonded asbestos containing material
- 2. FA Fibrous asbestos; AF Asbestos fines

6.1.4 PFAS

The Heads of EPAs Australia and New Zeeland (HEPA) PFAS National Environmental Management Plan Version 2.0 (2020) provides guidance on the management of PFAS impacted soils. The classes of soil criteria defined in the HEPA (2020) for human HILs are presented in **Table 14**.

Table 14. Summary of the adopted assessment criteria for PFAS in soil

Soil Criteria (Human Health)	PFOS + PFHxS (mg/kg)	PFOA (mg/kg)
Residential with accessible gardens (HIL-A)	0.01	0.1

6.1.5 Management Limits

In accordance with section 2.9 of schedule B1 of the ASC NEPM (2013), consideration of Management Limits for petroleum hydrocarbons will be undertaken to assess whether the reported soil conditions have the potential to pose a risk to buried infrastructure, or the formation of non-aqueous phase liquid (NAPL). Values for coarse grained soils from Table 1 B (7) of Schedule B1 will be adopted as a conservative approach.

A summary of the adopted TRH management limits for this investigation area is provided in **Table 15**.

Table 15. Management limits for TRH fraction in soil

Chemical	Management Limits for TRH (mg/kg dry soil)	
	Residential, parklands and public open space (coarse texture)	
F1 C6-C10	700	
F2 C10-C16	1,000	
F3 >C16-C34	2,500	
F4 >C34-C40	10,000	

6.2 Aesthetics

The ASC NEPM (2013) guidelines requires that aesthetic quality of accessible soils be considered even if analytical testing demonstrates that concentrations of CoPC are within the SAC.

It should be noted that there are no quantifiable guidelines in determining if soils are appropriately aesthetic. However, NEPM 2013 does indicate that professional judgement with regard to quantity, type, and distribution of foreign materials and/or odours in relation to the specific land use should be employed.

The following examples would trigger further aesthetic assessment:

- Hydrocarbon/organic sheen on surface water.
- Significant intrusion of foreign materials throughout the soil
- Anthropogenic soil staining; and
- Odorous soils (i.e. hydrocarbon or hydrogen sulphide odours).

6.3 Waste Classification Guidelines

Assessment criteria for soil which may be removed and disposed off-site during the proposed activity of the investigation area are outlined in the NSW EPA Waste Classification Guidelines Part 1: Classifying Waste (2014) and the NSW EPA Addendum to the Waste Classification Guidelines (2014) – Part 1: Classifying Waste (2016) ('the Waste guidelines').

In order to provide preliminary waste classification advice, chemical results from this DSI will be compared against the maximum values of specific contamination concentration (SCC) for classification without toxicity leaching (TCLP) for the contaminant threshold value for General Solid Waste (GSW) (≤CT1) and contaminant threshold value for restricted solid waste (≤CT2) Values are summarised in **Table 16** below.

Table 16: NSW EPA (2014) Waste Classification Guidelines

	Maximum values of specific contain	minant concentration (SCC) for			
	classification without TCLP	classification without TCLP			
	General Solid Waste	Restricted Solid Waste			
Contaminant	CT1 (mg/kg)	CT2 (mg/kg)			
Metals					
Arsenic	100	400			
Cadmium	80	20			
Chromium (VI) ¹	100	400			
Lead	100	400			
Mercury	4	16			
Nickel	40	160			
PAHs					
PAHs total ²	200	800			
Benzo(a)pyrene	0.8	3.2			
BTEX					
Benzene	10	40			
Toluene	288	1,152			
Ethyl-benzene	600	2,400			
Xylenes (total)	1,000	4,000			
TRH					
C ₆ – C ₉ TPH	650	2,600			
C ₁₀ – C ₃₆ TPH	10,000	40,000			
OCP/OPP					
Endosulfan ¹	60	240			
Chlorpyrifos	4	16			
PCBs					
PCBs total	<50	<50			
PFAS					
PFOS+PFHxS ³	1.8				
PFOA ³	18				

Notes

- 1- These limits apply to chromium in the +6 oxidation state only 2
- 2- Endosulfan means the total of Endosulfan I, Endosulfan II and Endosulfan sulfate
- 3- SCC1 values as per Addendum 1 of NSW EPA 2014 Waste Classification Guidelines.

6.4 Statistical Treatment

Analytical results from the soil sampling program are statistically analysed to determine their applicability to the assessment and recommendation of remedial actions in the event of SAC exceedances. The statistical analysis will be applied on a zone basis, if required.

A contaminant concentration in the soil will be deemed a non-exceedance if:

- The maximum concentration of all samples meets the specified acceptance criteria; or
- The 95% upper confidence limit (UCL) of the mean is below the acceptance criteria considering the following:
 - No individual exceedance is greater than 2.5 times the acceptance criteria; and
 - The standard deviation of the results should be less than 50% of the relevant investigation or screening level.

If the 95% UCL of the arithmetic mean of a contaminant concentration is above the acceptance criteria outlined in the NEPM (NEPC, 2013), then the soil will be classified as contaminated and will require further assessment, remediation, removal or management.

If the 95% UCL of the arithmetic average concentrations is below the acceptance criteria, and no concentrations are at a hotspot level, slight elevations above the acceptance criteria may be considered to pose an insignificant human health or environmental risk. The location will hence be considered a non-exceedance requiring no further assessment, remediation, removal or management. The statistical analysis for the assessment of ACM is not considered appropriate.

6.5 Soil Vapour Assessment Criteria

As an initial screening tool, the soil vapour results were screened against the interim soil vapour HILs for volatile chlorinated hydrocarbons (VHCs) (Table 1a(2)) and the soil vapour HSLs for vapour intrusion for non-chlorinated volatile organic compounds (VOCs) (Table 1A(5)) outlined in Schedule B1 of the ASC NEPM (2013).

Table 17 outlines the interim soil vapour HILs that were adopted for VCHs, which are independent of the depth of sampling. **Table 18** outlines the soil vapour HSLs for vapour intrusion that were adopted for VOCs (not including VCHs) which are dependent upon sampling depth. Results were screened against low to high density residential land use criteria for sands 0 m to <2 m depth.

The criteria for a sand lithology was selected as sandy soils was present within the soil profile.

Table 17: Adopted ASC NEPM (2013) Interim Soil vapour HILs

CoPC	Interim Soil Vapour HIL –	
	Residential A (mg/m³)	
Tetrachloroethene (PCE)	2	
Trichloroethene (TCE)	0.02	
Cis-1,2-DCE	0.08	
Vinyl Chloride	0.03	
1,1,1-trichloroethane (1,1,1-TCA)	60	

Table 18: Adopted ASC NEPM (2013) HSL for Vapour Intrusion

CoPC	Soil Vapour HSLs	Soil Vapour HSLs	
	Low- high density residential, sand, 0 m to <1 m (mg/m³)	Low– high density residential, sand, 1 m to <2 m (mg/m³)	
Toluene	1,300	3,800	
Ethylbenzene	330	1,100	
Xylenes	220 750		
Naphtalene	0.8		
Benzene	1 3		
F1 C6-C10 ¹	180	640	
F2 C10-C16 ²	130 560		

Notes

¹⁻ To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction

²⁻ To obtain F2 subtract naphthalene from the >C10-C16 fraction.

7 Results

7.1 Field observations

7.1.1 Features

Photographs of the investigation area and the subsurface conditions are presented in **Appendix B** with **Figure 2** presenting investigation area features and sampling locations. At the time of the initial borehole investigation on 12 January 2024, the investigation area was covered with asphalt and used as part of a playground and a demountable classroom on brick piers was present in the southeastern portion of the investigation area (**Photograph 1**).

Whilst the surrounding topography was seen to be sloping downwards in a northerly direction the investigation area and surrounding hard stand playground and adjacent building was engineered level (**Photograph 2**).

There were no indications of visual / olfactory contamination or potential asbestos containing materials (ACM) noted upon the surface at the investigation area. There was also no indication or evidence of potential sources of contamination (e.g., bulk fuel/ chemical storage).

During the subsequent intrusive investigations on 24 and 26 April 2024, the demountable building was removed.

7.1.2 Soil profile

In general, similar lithologies were encountered at the bore hole and test pit locations.

The boreholes were advanced to between 1.0 and 1.5 m BGL. Below a generally thin layer of asphalt (0.05m) *In-situ* shallow soils across the investigation area generally consisted of compacted mixed small to large angular gravels combined with coarse sand, dark grey/ brown overlaying sand (Fill) with mixed gravels. Natural sand / clayey sand was encountered between 0.3 and 0.6 mBGL with extremely weathered sandstone generally encountered from between 0.6 and 1.0 mBGL.

See **Table 19** for summary of the soil lithology across the investigation area and **Appendix C** for detailed lithological bore logs.

Table 19. Ground Model

Tuble 13. Ground Model			
Lithology	Approximate Depth Range (m BGL)	Material Description	
Asphalt layer (FILL)	0-0.05	Asphalt	
Road base (FILL)	0.05—0.2	Mixed small to large angular gravels combined with coarse sand, dark grey / brown	
SAND (FILL)	0.2—0.3	Fill SAND: Fine to medium grained, brown with red sandstone gravels.	
Natural Clayey SAND	0.3—0.6	SAND: fine to medium grained, pale brown with red, with clay.	
SANDSTONE	> 0.6	SANDSTONE: Fine to medium, red / pale grey, extremely weathered, extremely low strength.	

During the soil vapour bore installation, groundwater seepage was encountered at location SV03 at 1.45 m.

All soil samples returned PID readings at background levels (below 1 ppm) which is not indicative of hydrocarbon/ volatile impact. Refer to bore logs in **Appendix C** for PID values and **Appendix E** for the PID calibration certificate.

7.2 Soil Analytical Results

7.2.1 Site Assessment Criteria

Tabulated laboratory results compared to the adopted SAC are presented in **Appendix F** with laboratory certificates of analysis provided in **Appendix G**.

A summary of the reported results compared to SAC has been listed below.

- Low concentrations of heavy metals below adopted SAC with some below the laboratory's limit of reporting (LOR).
- Low concentrations of PAH below adopted SAC with some below the laboratory's limit of reporting (LOR).
- BTEX compounds were reported below the LOR in all samples.
- Low detections of middle to heavy end TRH with maximum reported concentration of TRH >C₁₆-C₃₄ of 113 mg/kg and TRH >C₃₄-C₄₀ of 175 mg/kg, all concentrations were below SAC.
- Reported concentrations of OCP/ OPP and PCB were below the LOR.
- Reported concentrations of PFAS were below the LOR.
- Asbestos/ asbestos containing material was not detected in any soil samples submitted for laboratory analysis.

7.2.2 Waste Classification

Chemical results compared to the waste classification guidelines are presented in Table E3 in Appendix F.

The reported concentrations of analytes were below the maximum threshold concentrations for GSW except for nickel (threshold of 40 mg/kg) at 4 sampling locations and for Benzo(a)pyrene (B(a)P) (threshold of 0.8 mg/kg) at one location. All samples with exceedances were collected from the fill (road base material) encountered immediately below the asphalt. Concentrations of all other analytes were below CT1 criteria for all samples analysed.

Refer to **Table 20** below for samples exceeding the CT1 criteria for General Solid Waste.

Table 20: Exceedances for CT1 criteria for general solid waste

Borehole location	Matrix	Sample ID	Matrix	Exceedances (mg/kg)	CT1 criteria for GSW (mg/kg)
BH01	Fill (road base)*	C BH01 0.2-0.3	FILL - Road base	Nickel: 57.4	Nickel: 40
	(, , , , , , , , , , , , , , , , , , ,			B(a)P: 0.96	B(a)P: 0.8
ВН03	Fill (road base)*	C_BH03_0.2-0.3	FILL - Road base	Nickel: 53.0	Nickel: 40
BH04	Fill (road base)*	C_BH04_0.2-0.3	FILL - Road base	Nickel: 65.8	Nickel: 40
BH05	Fill (road base)*	C_BH05_0.2-0.3	FILL - Road base	Nickel: 41.2	Nickel: 40

^{*}Mixed small to large angular gravels combined with coarse sand, dark grey / brown

7.3 Soil Vapour Analytical Results

The soil vapour analytical results are presented in **Table E4** in **Appendix E**. Laboratory soil vapour analysis reported concentrations below the SAC at the three sampling locations assessed. Limited detections of volatile hydrocarbons were identified within the samples as presented in **Table 21** below.

Table 21: Soil Vapour Results above Reporting Limits

Soil vapour	PID purge	Tolu	ene	Нех	ane	Propene			
bore	reading (min-max)	ppmv	mg/m³	ppmv	mg/m³	ppmv	mg/m³		
SV01	0 - 0.7	0.0267	0.236	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>		
SV02	0 – 2.9	<lor< th=""><th><lor< th=""><th>0.138</th><th>0.486</th><th>3.63</th><th>6.24</th></lor<></th></lor<>	<lor< th=""><th>0.138</th><th>0.486</th><th>3.63</th><th>6.24</th></lor<>	0.138	0.486	3.63	6.24		
SV03	0 – 8.0	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>		

The detections of air phase volatile hydrocarbons are further discussed below:

- **Toluene**. Trace detections of toluene were detected above the LOR (0.19 mg/m³) at location SV01 at 0.24 mg/m³, which is more than 3 times the order of magnitude below the adopted SAC (Soil Vapour HSL Criteria for Vapour Intrusion) of 1,300 mg/m³. TRH C7-C8 was also present within SV01 at similar concentrations to toluene. It is understood that the TRH C7-C8 fraction identified represents the toluene (a C7 hydrocarbon).
- **Hexane**. One detection of hexane (0.486 mg/m³) was detected above the LOR (0.18 mg/m³) at location SV02. Hexane is a component of SAC for TRH F1. On the basis that concentrations of TRH F1 (20 mg/m³) were below SAC (640 mg/m³), no further evaluation of hexane is considered warranted.
- **Propene**. One detection of propene (6.24 mg/m³) was detected above the LOR (0.09 mg/m³) at location SV02. Whilst no SAC was presented for propene, it is noted that that the US EPA Regional Screening Levels (US EPA RSL) provide a value of 3 mg/m³ for propene. The two other locations (SV01 and SV03) did not show the presence of propene above the LOR, indicating the presence of propene is likely to be localised and low in concentration. On this basis, further evaluation of propene is not considered warranted.

The following was also noted in relation to the soil vapour:

- all three samples were collected in relatively close proximity (<10m between all three locations), with no consistent detections of analytes.
- the detections are not consistent with UPSS and petroleum hydrocarbons sources. For example, generic contaminants of petroleum hydrocarbon fuel would be expected in soil vapour associated with a hydrocarbon plume, such as benzene, ethylbenzene, xylenes and volatile shorter-chained hydrocarbons such as F1 C₆-C₁₀ and F2 C₁₀-C₁₆.

The detections of the hydrocarbons found in the soil vapour samples may be due asphalt which contains bituminous products, which may realise air phase hydrocarbons. The sampling of soil vapour did not indicate the presence of air phase volatile petroleum hydrocarbons and further soil vapour sampling is not considered warranted.

7.4 Quality Assurance and Quality Control

For the purposes of this report, the Quality Assurance / Quality Control (QA/QC) program adopted includes an assessment of laboratory QA/QC and field QA/QC comprising of intra-laboratory and inter-laboratory duplicates. Further details and information regarding the QA/QC program can be referred to in **Appendix H** and the calculated relative percentage difference (RPDs) between the primary and the intra- and interlaboratory duplicates are presented in **Appendix I**.

The results of the data quality assessment conclude that the analytical results are representative of the conditions of the sampling locations at the time of sampling and are directly usable for the purpose of this assessment.

8 Discussion and Revised Conceptual Site Model

The conceptual site model has been updated to reflect the findings of the recent environmental investigation, including soil and soil vapour analytical data, and is presented in the sections below.

8.1 Aesthetics

During the intrusive investigation, no visual or olfactory evidence of contamination was noted. There were no signs of uncontrolled fill present in any of the sampling locations.

The lithology across the investigation area was consistent across the investigation area with shallow fill consisting of asphalt, sub-base gravels and gravelly sand overlaying natural sand / clayey sand with extremely weathered sandstone generally encountered between from approximately 0.6 mBGL.

8.2 Soil

No significant sources of soil contamination were identified. Laboratory analysis supported visual observations with concentrations of CoPC reported below SAC criteria for all samples analysed. Asbestos was not detected in any samples during the initial borehole investigation in January 2024 or in April 2024. No fragments of PACM were noted at surface or within soil profile during fieldwork.

Analytical results were compared to the waste classification guidelines for GSW. There were marginal exceedances of the CT1 criteria for GSW of Nickel in 4 samples and in one sample for B(a)P, all collected from the fill layer (road base) immediately below the asphalt. Concentrations of all other analytes were below CT1 criteria for all samples analysed.

Whilst the road base is currently chemically classified as restricted solid waste, if this material needs to be disposed offsite, a Toxicity Characteristic Leaching Procedure (TCLP) is recommended which can revise the classification to GSW pending the samples return leachable concentrations below the TCLP1 criteria assigned for GSW.

8.3 Soil Vapour

As presented in **Section 7.3**, limited detections of air phase hydrocarbons were identified. The concentrations were found to be below SAC or at concentrations not warranting further consideration. The limited detections of hydrocarbons were not found to be consistent with a petroleum hydrocarbon source.

8.4 Revised Risk Linkage Evaluation

Based upon the results and findings of this assessment, there were no completed risk linkages identified within the CSM evaluation.

9 Conclusion and Recommendations

ADE was engaged by DoE to undertake a targeted DSI to investigate the nature and extent of potential contamination (if any) within a portion of land subject to proposed activity within Cammeray Public School (the 'site').

The DSI is required to fulfill due diligence requirements to determine whether contamination exists within the footprint of a proposed new building (investigation area) at levels that warrant additional investigation or necessitate future management actions to ensure suitability for the proposed activity.

The intrusive investigation was undertaken between 12 January 2024 and 26 April 2024 and comprised advancement of 5 bore holes and 5 test pits across the investigation area to assess the subsurface conditions and collect samples for laboratory assessment of contaminants of potential concern. The results of the soil assessment were also used to provide indicative advice regarding the offsite management of material which may be surplus to requirements in accordance with the Waste Guidelines.

A soil vapour assessment was also undertaken to close out any potential off-site source of contamination from a nearby service station.

Based upon the results of the investigation, the following conclusions are made:

- There were no uncontrolled fill present at the investigation with the soil encountered in the
 investigation area generally described as fill consisting of a thin layer of asphalt overlaying mixed
 graves (road base) and sand with gravel inclusions. Natural sand / clayey sand was encountered
 between 0.3 and 0.6 mBGL with extremely weathered sandstone generally encountered from
 between 0.6 and 1.0 mBGL.
- The results of the soil investigation revealed no exceedances of Site Assessment Criteria.
- Marginal exceedances of the CT1 criteria for General Solid Waste (GSW) was recorded in the road base fill material for Nickel at four locations and for Benzo(a)pyrene in one location. If material requires offsite disposed of during the proposed activity, a material classification assessment needs to be undertaken for the surplus material.
- The results of the soil vapour investigation revealed that the offsite service station is unlikely to have impacted the area beneath the investigation area and that soil vapour detections are not representative of a contamination risk to receptors

Based on the analytical results collected from soil samples analysed across the investigation area, the soils present a low risk of contamination and are considered chemically suitable for the proposed activity and ongoing land-use as a primary school. The soil vapour assessment confirmed that there was no soil vapour risk from the UPSS within the nearby service station.

ADE considers the investigation area suitable for the proposed activity with no further investigation needed.

10 Mitigation Measures

The potential project environmental risks and recommended mitigation measures have been summarised in **Table 22**.

Table 22: Summary of Potential Risks and Mitigation Measures

Potential Risk	Mitigation Measure
Unexpected finds during the proposed activity.	Develop and prepare an unexpected finds protocol to be implemented during the demolition and construction phase of the activity.
Erosion and Sediment.	Develop and prepare a soil and water management plan/ subplan to prevent erosion and generation of sediment.
Environmental harm during construction.	Develop and prepare a construction environmental management plan to be implemented during the course of demolition and construction phase of the activity.
Disposal of waste soils generated by construction.	Ensure all soil to be removed from the investigation area as waste is classified in accordance with NSW EPA (2014) prior to leaving the investigation area. Where possible, attempts to beneficially re-use waste either on site or off-site subject to application of the Resource Recovery Framework outline within the POEO Act.

11 Limitations and Disclaimer

This report has been prepared for the exclusive use of the client and is limited to the scope of the work agreed in the terms and conditions of contract (including assumptions, limitations and qualifications, circumstances, and constraints). ADE has relied upon the accuracy of information and data provided to it by the client and others.

ADE has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the environmental industry in Australia. No other warranty, expressed or implied, is made or intended. No one section or part of a section, of this report should be taken as giving an overall idea of this report. Each section must be read in conjunction with the whole of this report, including its appendixes and attachments. The report is an integral document and must be read in its entirety.

To the fullest extent permitted by law, ADE does not accept or assume responsibility to any third party (other than the client) for the investigative work, the report or the opinions given.

The scope of work conducted, and report herein may not meet the specific needs (of which ADE is not aware) of third parties. ADE cannot be held liable for third party reliance on this document. Any third party who relies upon this report does so at its own risk.

The subsurface environment can present substantial uncertainty due to it complex heterogeneity. The conclusions presented in this report are based on limited investigation of conditions at specific sampling locations chosen to be as representative as possible under the given circumstances. However, it is possible that this investigation may not have encountered all areas of contamination at the site due to the limited sampling and testing program undertaken.

ADE does not verify the accuracy or completeness of, or adopt as its own, the information or data supplied by others and excludes all liability with respect to such information and data. To the extent that conditions differ from assumptions set out in the report, and to the extent that information provided to ADE is inaccurate or incomplete or has changed since it was provided to ADE, the opinions expressed in this report may not be valid and should be reviewed.

ADE's professional opinions are based upon its professional judgement, experience, training, and results from analytical data. In some cases, further testing and analysis may be required, thus producing different results and/or opinions. ADE has limited its investigation to the scope agreed upon with its client.

This Limitation and Disclaimer must accompany every copy of this report.

12 References

ADE (2023) Preliminary Site Investigation – Cammeray Public School, 68 Palmer Street, Cammeray, ref: A101023.0722_PSI_v1f, dated: 21 September 2023

Australian Government, Department of Agriculture, Fisheries and Forestry - Australian Soil Resources Information System (ASRIS)

Australian Standard AS 4482.1 Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds.

Australian Standard AS 4482.2 Guide to the sampling and investigation of potentially contaminated soil. Part 2: Volatile substances.

National Environment Protection Council (NEPC) – National Environment Protection (Assessment of Site Contamination) Measure 1999 (as Amended 2013) (ASC NEPM, 2013).

NSW EPA. (2021). Contaminated Land – Record of Notices from

http://www.epa.nsw.gov.au/prclmapp/aboutregister.aspx, date accessed 20/01/2024.

NSW EPA. (2020) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.

NSW EPA. (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme 3rd Ed.

NSW EPA. (2014). Waste Classification Guidelines – Part 1: Classifying Waste. Sydney, Australia.

NSW EPA. (2016), Addendum to Waste Classification Guidelines (2014) – Part 1: classifying waste.

NSW EPA. (2022a). Sampling design guidelines – Part 1. Application.

NSW EPA. (2022b). Sampling design guidelines – Part 2. Interpretation.

NSW Geological Survey Department of Mineral Resources, Geological Series Sheet 9130: Sydney, 1983

NSW Government, Department of Planning and Environment. (2023), Soil and Land Information, accessed from The Sharing and Enabling Environmental Data (SEED) Portal

[https://datasets.seed.nsw.gov.au/dataset/a62ae869-672f-493d-8fae-bfb32d820b74], date accessed 20/01/2024.

State Environmental Planning Policy (Planning Systems Resilience 2021)

US EPA. (2004) Guidance on Assessing Quality Systems.

US EPA. (2006) Guidance on Systemic Planning Using the Data Quality Objectives Process.

US EPA (2024) Regional Screening Levels (RSLs) Generic Tables (Tables as of: May 2024)

Work Health and Safety Act 2011.

Work Health and Safety Regulation 2017.

WSP (2020a) Cammeray Public School asbestos in grounds management plan. Prepared for NSW Department of Education.

Figures

Appendix A: Proposed Building Footprint									

Proposed development plans (as received by SINSW) Proposed new building highlighted in yellow and purple.

Appendix B: Photographs

Service locating - 09 January 2024

Photograph 1: The site and location of proposed development – facing south. Demountable classroom to the left of the photograph. Photograph taken during service locating – 09 January 2024.

Photograph 2: Facing west from site towards Miller Street showing natural topography sloping north on Miller Street with levelled site surface in foreground of photograph. Photograph taken during service locating – 09 January 2024.

Borehole assessment – 12 January 2024

Photograph 3: Borehole BH02. Natural residual soil consisting of brown to red clayey sand material encountered from 0.3 m BGL.

Photograph 4: Soil lithologies of fill and natural (left side) alongside bedrock material shown as pink highly weathered sandstone.

Photograph 5: Bore hole BH03 - Road base material consisting of mixed small to large angular gravels combined with coarse sand.

Photograph 6: Bore hole BH03. Weathered, medium grained, red and pale grey sandstone encountered from 0.5 m BGL.

Soil vapour bore installation – 24 April 2024

Photograph 7: Soil vapour well installation

Photograph 8: Soil vapour well installation

Photograph 9: Soil vapour well installation

Photograph 10: Soil vapour bore installation completed with flush covers concreted into the ground and secured with bolts to prevent tampering and to allow sampling at a later date.

Test pit assessment – 26 April 2024

Photograph 11: Test pit location TP02.

Photograph 12: Location TP02 with asphalt overlaying shallow fill (gravelly sand) with sand at 0.15 mBGL and natural sandy clay encountered from 0.3 mBGL (TP02)

Photograph 13: Test pit location TP05, located within footprint of previous demountable classroom.

Photograph 14: Refusal on sandstone at 0.4 mBGL (TP05)

Photograph 15: Asbestos assessment included field screening of 10 Litre samples at all test pit locations.

Photograph 16: Re-instatement including compaction and asphalting undertaken at the completion of the investigation.

Photograph 17: Soil vapour sampling set-up.

Appendix C: Borehole and Test Pit Logs

NON-CORE DRILL HOLE - GEOLOGICAL LOG CLIENT : School Infrustructure NSW PROJECT : Cammeray Public School LOCATION : 68 Palmer Street, Cammeray NSW HOLE NO : BH01 FILE / JOB NO : A2 SHEET : 1 OF 1

FILE / JOB NO : A201023.0722.01

SURFACE ELEVATION: ANGLE FROM HORIZONTAL: 90° POSITION :

RIG TYPE: Drill Rig MOUNTING: Track CONTRACTOR: Matrix Drilling DRILLER:

DATE STARTED: 12/1/2024 DATE COMPLETED: 12/1/2024 DATE LOGGED: 12/1/2024 LOGGED BY: MCM C

DAT	TE ST	ARTE	ED : 1	2/1/2024	DAT	E COM	1PLE	TED: 12/1/2024 DATE LOGGED: 12/1/2024 LOGGED E	3Y : I	ИСМ	CHECKED BY:
		DF	RILLIN	IG				MATERIAL			
DRILLING DONG SCASING	WATER	1		SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	GROUP		MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
A	A			_	- 0.0			Asphalt 0.05m Roadbase material 0.15m FILL SAND: fine to medium grained, brown with red. with sandstone gravels.	D		PAVEMENT
					0.2 —			•	м	L	PID 0.2 ppm -
								0.50m SAND: fine to medium grained, pale brown and yellow, with clay.			RESIDUAL SOIL PID - 0.1ppm
——————————————————————————————————————	— (Not encountered)——			0.70m SPT 1 20/80mm HB N=R			SP- SC	0.80m SANDSTONE: fine to medium, red pale grey. extremely weathered, extremely low strength.	М	D	BEDROCK
See					1.0 —						-
					- 1.2 — - - -				D to M		-
	•				1.4 —			1.50m Hole Terminated at 1.50 m			-
					1.6 — - -			TC bit refusal			_
					- 1.8 — - -						_
deta	ils of	anatory abbrev f descr	viation	S	2.0						

NON-CORE DRILL HOLE - GEOLOGICAL LOG CLIENT : School Infrustructure NSW PROJECT : Cammeray Public School LOCATION : 68 Palmer Street, Cammeray NSW HOLE NO : BH02. FILE / JOB NO : A20 SHEET : 1 OF 1

FILE / JOB NO : A201023.0722.01

SURFACE ELEVATION: POSITION: ANGLE FROM HORIZONTAL: 90°

DRILLER:

RIG TYPE : Drill Rig MOUNTING : Track CONTRACTOR : Matrix Drilling DRILLE
DATE STARTED : 12/1/2024 DATE COMPLETED : 12/1/2024 DATE LOGGED : 12/1/2024 LOGGED BY : MCM CHECKED BY ·

\sim	RESS	Z	pr.	ر» رن	_						>	
& CASING	WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	GROUP		MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
١					- 0.0			0.05m	Asphalt Roadbase material	D		PAVEMENT
					0.2			0.15m	FILL SAND: fine to medium grained, brown with red. with sandstone gravels.	М	L	FILL PID - 0 ppm
					-			0.30m	SAND: fine to medium grained, pale brown with red, with clay.			RESIDUAL SOIL PID - 0 ppm
				0.50m	0.4 —		SP- SC				MD	
	(Not encountered) —			SPT 1 5,7,9 N=16	0.6							
	(Not				-			0.70m	SAND: fine to medium grained, pale brown with red. with sandstone fragments.	М		
					0.8 —		sw				MD	
				0.95m	1.0 —			1.00m	SANDSTONE: fine to medium, red pale grey. extremely weathered, extremely low strength.			BEDROCK
					-				extremely low strength.	D to M		
,	•				1.2			1.20m	Hole Terminated at 1.20 m TC bit refusal			
					1.4 —	-						
					-							
					1.6 —	-						
					1.8 —							
					-							

NON-CORE DRILL HOLE - GEOLOGICAL LOG CLIENT : School Infrustructure NSW PROJECT : Cammeray Public School LOCATION : 68 Palmer Street, Cammeray NSW

FILE / JOB NO : A201023.0722.01 SHEET: 1 OF 1

HOLE NO : BH03

SURFACE ELEVATION: POSITION: ANGLE FROM HORIZONTAL: 90°

MOUNTING : Track DRILLER: RIG TYPE: Drill Rig CONTRACTOR: Matrix Drilling

DATE STARTED: 12/1/2024 DATE COMPLETED: 12/1/2024 DATE LOGGED: 12/1/2024 LOGGED BY: MCM CHECKED BY:

				2/1/2024	D/ (I	L OOW		FED: 12/1/2024 DATE LOGGED: 12/1/2024 LOGGED	J1 . 1	VICIVI	CHECKED BY:
			RILLIN					MATERIAL			
DRILLING & CASING	WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
	^				- 0.0 -			Asphalt 0.05m Roadbase material	D		PAVEMENT
					0.2 —			0.15m FILL SAND: fine to medium grained, brown with red. with sandstone gravels.	М		FILL PID: 0 ppm
					-			0.30m SAND: fine to medium grained, pale brown with red, with clay.			RESIDUAL SOIL PID: 0 ppm
				0.50m SPT 1	0.4		SP- SC	0.50m SANDSTONE: fine to medium, red pale grey. extremely weathered,	М	MD	BEDROCK
—— AD/T	(Not encountered)-			HB N=R	0.6 —			extremely low strength.			-
	Ĭ				-						
					0.8 —				D to M		
					1.0 —			1.00m SANDSTONE: fine to medium, pale white. extremely weathered, extremely low strength.	-		
•	•				- - - 1.2			1.20m			
					-	- - -		Hole Terminated at 1.20 m TC bit refusal			
					1.4 —	-					
					1.6—						
					- -	- - -					
					1.8 —						
					- 2.0	-					
details	s of a	natory abbrev descr	riation	S							

NON-CORE DRILL HOLE - GEOLOGICAL LOG

CLIENT : School Infrustructure NSW PROJECT : Cammeray Public School
LOCATION : 68 Palmer Street, Cammeray NSW

HOLE NO : BH04
FILE / JOB NO : A2
SHEET : 1 OF 1

FILE / JOB NO : A201023.0722.01

SURFACE ELEVATION: POSITION: ANGLE FROM HORIZONTAL: 90°

RIG TYPE : Drill Rig MOUNTING : Track CONTRACTOR : Matrix Drilling DRILLE
DATE STARTED : 12/1/2024 DATE COMPLETED : 12/1/2024 DATE LOGGED : 12/1/2024 LOGGED BY : MCM DRILLER:

	2500		ILLIN					MATERIAL	1	<u></u>	
& CASING	WATER SSE	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
A	A				0.0 —			Asphalt			PAVEMENT
					-			0.10m Roadbase material	D		
					0.2 —			0.20m FILL SAND: fine to medium grained, brown with red. with sandstone gravels.	М		FILL PID: 0 ppm
					-			0.30m SAND: fine to medium grained, pale brown with red, with clay.			RESIDUAL SOIL
	(pc			0.40m SPT 1 10/20mm HB	0.4 —		SP- SC		М	MD	PID: 0.3 ppm
— AD/T —	(Not encountered)			N=R	-			0.50m SANDSTONE: fine to medium, red pale grey. extremely weathered, extremely low strength.			BEDROCK
	ž)				0.6						
					-						
					0.8				D to M		
					-						
•					1.0			1.00m			
					-			Hole Terminated at 1.00 m TC bit refusal			
					1.2						
					-						
					-						
					1.4 —						
					- -						
					1.6 —						
					-						
					1.8 —						
					-						
ee F	Expla	natory	Note	s for	2.0 —						

- DGD | LIb: ADE 2.00.0 2023-12-01 Prj: ADE 2.00.0 2023-12-0

NON-CORE DRILL HOLE - GEOLOGICAL LOG

BH05 FILE / JOB NO : A201023.0722.01

HOLE NO :

CLIENT School Infrustructure NSW PROJECT: Cammeray Public School SHEET: 1 OF 1 LOCATION: 68 Palmer Street, Cammeray NSW SURFACE ELEVATION: POSITION: ANGLE FROM HORIZONTAL: 90° RIG TYPE: Drill Rig MOUNTING: Track CONTRACTOR: Matrix Drilling DRILLER: DATE STARTED: 12/1/2024 DATE COMPLETED: 12/1/2024 DATE LOGGED : 12/1/2024 LOGGED BY: MCM CHECKED BY: DRILLING MATERIAL DRILLING PENETRATION PROGRESS GROUND WATER LEVELS SAMPLES & FIELD TESTS MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY DEPTH (m) GRAPHIC LOG MATERIAL DESCRIPTION GROUP STRUCTURE DRILLING & CASING Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components & Other Observations 0.0 PAVEMENT 0.05m Roadbase materials D FILL FILL SAND: fine to medium grained, brown with red. with sandstone 0.2 PID: 0.1 ppm PID: 0.3 ppm BEDROCK SANDSTONE: fine to medium, red pale grey. extremely weathered, extremely low strength. 0.4 SPT 1 11,10/20mn HB N=R Not encountered) 0.6 D to M 0.8 1.0 -Hole Terminated at 1.20 m TC bit refusal 1.4 1.8 See Explanatory Notes for details of abbreviations & basis of descriptions.

BORE HOLE NUMBER: SV01 PAGE 1 OF 1

PR	OJE	CT NU	IMBI	ER	A10	1023.	0722		PROJECT LO	CATI	ON _	68 Pa	lmer Street,	Cammeray NSW
								COMPLETED 26/4/24						
								DUP						
НО	LE [DIAME	TER	_					LOGGED BY	AS			(CHECKED BY KA
NO.	TES												I	
Method	Water	Well Detail:	s	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
		M	\			$\times\!\!\times\!\!\times$		ASPHALT						Concrete (well details)
							SP	FILL: Gravelly SAND, coarse grained, graded	1	М				
					-			FILL: SAND, coarse grained, yellow-bri	own, with					
						\bowtie								
					_									
			ď											Bentonite (well details)
					_			SANDSTONE: weathered, white, yellov	and brown					
						: : : :								
					0 <u>.5</u>									
						: : : :								
						: : : :								
					_									
					_									
					1.0									
						: : : :		SANDSTONE: Competent, white		1				
					_									
						: : : :								
					_									3-5 mm graded sand (well details)
														SV Probe (well details)
					_									
					1.5	: : : :								
		T. 1	Ť					SV01 terminated at 1.5m			-			
					-									
					-									
		I										1	I	

ADE_BOREHOLE 23.0722_SV.GPJ GINT STD AUSTRALIA.GDT 16/5/24

BORE HOLE NUMBER: SV02

		E	RL	JUF	■ Tel	lephone: 1300976922						
CLI	ENT	School Inf	rastru	cture I	NSW		PROJECT NA	ME _	Deta	iled S	<u>ite Investigati</u>	on - Cammeray Public School
PR	IJΕ	CT NUMBER	_A10	1023.	0722		PROJECT LO	CATI	ON _	68 Pa	Imer Street, C	Cammeray NSW
DA ⁻	E S	STARTED 2	6/4/24			_COMPLETED _ 26/4/24	R.L. SURFACI	E				ATUM
DRI	LLII	NG CONTRA	CTOR	FIC	O GRO	OUP	SLOPE90°				E	BEARING
EQ	JIPI	MENT Truck	r-moui	nted d	rill rig		COORDINATE	s _				
но	.E [DIAMETER _					LOGGED BY	AS			c	HECKED BY KA
NO.	ΓES											
Method	Water	Well Details	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
				$\times\!\!\times\!\!\times$	SP	ASPHALT		_ 				Concrete (well details)
			0 <u>.5</u>		SP	FILL: Gravelly SAND, coarse grained, graded, dry SAND: coarse grained, yellow-brown, SANDSTONE: competent, white, yellow	with gravel	M				Bentonite (well details)
						SV02 terminated at 1.4m						3-5 mm graded sand (well details) SV Probe (well details)
			1. <u>5</u>									

ADE ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922

ADE_BOREHOLE 23.0722_SV.GPJ GINT STD AUSTRALIA.GDT 16/5/24

BORE HOLE NUMBER: SV03

			G	RL	IUF	Tel	lephone: 1300976922						
		School											
PR	IJΕ	CT NUM	BER	_A10	1023.	0722		PROJECT LO	CATI	ON _	68 Pa	Imer Street, (Cammeray NSW
DA	TE S	TARTE) <u>26</u>	6/4/24				R.L. SURFACI	E			[ATUM
DRI	LLII	NG CON	TRAC	TOR	_FIC	O GRO	OUP	SLOPE <u>-90°</u>				E	BEARING
EQ	JIPI	MENT _	Truck-	-mour	nted d	rill rig		COORDINATE	s _				
HO	.E [DIAMETE	ER _					LOGGED BY	AS			(CHECKED BY KA
NO.	ΓES						T	T					
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
		V			$\times\!\!\times\!\!\times$		ASPHALT	1-1					Concrete (well details)
					\bowtie	SP	FILL: coarse grained, brown, poorly gra FILL: Gravelly SAND, coarse grained, y		M				
				_	\bowtie		with gravel						
		8		_									
													Bentonite (well details)
				_									
				_			SANDSTONE: Weathered, white, yellow	and brown					
							Care and a second secon						
				0 <u>.5</u>									
				_									
				_									
				_									
				_									
				1. <u>0</u>	: : : :		SANDSTONE: Competent, white and br	own					3-5 mm graded sand (well details)
							SANDOTONE. Competent, write and bi	OWII					SV Probe (well details)
				_									,
				-									
	ЗGL			_									Backfilled with sand from 1.5m to 1.3m (well details)
	■1.45mBGL												1.5III (Well details)
	¥			_									
				1.5									
							SV03 terminated at 1.5m						
				_									
				_									
				_									
				_									

ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922

ADE_BOREHOLE 23.0722_TP-ADELAPTOP290.GPJ GINT STD AUSTRALIA.GDT 16/5/24

TEST PIT NUMBER TP1

						Telephone: 1300976922	DDO IEST NA		0		- Darkii - Oak	.1		
						9 NSW 3.0722						OI Cammeray NSW		
						COMPLETED _26/4/24								
EX	LIIDI	MENT	N CO	N I KA	CIOR	Brefni	SLOPE					BEARING		
	TES		-(IVIE I	ER _(J.JIII		LOGGED B1	AS CHECKED BY KA						
								ŧ						
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations		
Е						ASPHALT		D	Н			-		
Ш			-			FILL: Gravelly SAND, coarse grained, brown, po	oorly graded,	D	Vst					
ш				$\times\!\!\times\!\!\times$	SP	dry SAND: coarse grained, yellow-brown, with grave		М	MD					
			_								TP1_0.2-0.3	Asbestps field screening of 10L of material undertaken		
Ш			_		CL	NATURAL: Sandy CLAY: Low plasticity, yellow-bred/orange colour, fine grained, moist	prown and	М	MD					
			-											
			0 <u>.5</u>											
			_											
			_								TP1_0.6-0.7			
						TP1 terminated at 0.8m								
			-											
			1 <u>.0</u>	1										
			_											
			-											
			_	-										
			1 <u>.5</u>	1										
			_	-										
			_											
			_	-										
			_											

ADE ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERNATER NSW 2128 Talenbarg: 1200076023

ADE_BOREHOLE 23.0722_TP-ADELAPTOP290.GPJ GINT STD AUSTRALIA.GDT 16/5/24

TEST PIT NUMBER TP2

		4	_	GR		P Telephone: 1300976922								
CLI	ENT	Sc	hool l	Infrast	ructure	NSW	PROJECT NAME _Cammeray Public School							
PROJECT NUMBER A101023.0722 PROJECT LOCATION 68 Palmer Street, Cammeray NSW												Cammeray NSW		
						COMPLETED _26/4/24								
						Brefni								
			AMET	ER _().5m		LOGGED BY	_AS				CHECKED BY KA		
NO	TES										1			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations		
Е						ASPHALT		D	Н					
Ш			-			FILL: Gravelly SAND, coarse grained, brown, poor	orly graded,	D	Vst					
Ш				***	SP	dry SAND: coarse grained, yellow-brown, with gravel	and cobbles,	М	MD					
			_			moist					TP2_0.2-0.3			
ш			-		CL	Sandy CLAY: Low plasticity, yellow-brown and re	d/orange	М	MD					
			0 <u>.5</u>			colour, fine grained, moist								
Е			_		CH	CLAY: medium plasticity, yellow-brown in colour		М	F		TP2_0.6-0.7			
			-											
						TP2 terminated at 0.8m								
			-	1										
			1 <u>.0</u>											
			-											
			-											
			-											
			-											
			1 <u>.5</u>											
			_											
			_											
			_											
			_											

ADE_BOREHOLE 23.0722_TP-ADELAPTOP290.GPJ GINT STD AUSTRALIA.GDT 16/5/24

TEST PIT NUMBER TP3

	Telephone: 1300976922												
	CLIENT School Infrastructure NSW PROJECT NAME Cammeray Public School PROJECT NUMBER A101023.0722 PROJECT LOCATION 68 Palmer Street, Cammeray NSW												
												· ·	
						COMPLETED 26/4/24							
						Brefni							
				cavato	r 		COORDINATES						
			AIVIE I	EK _().om		LOGGED BY AS CHECKED BY KA						
NOTES							+						
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations	
Е						ASPHALT		D	Н				
			_										
ш				XXXX		FILL: Gravelly SAND, coarse grained, brown, po	oorly graded	D	Vst				
ш			_	\bowtie	SP	dry SAND: coarse grained, dark brown, with gravel, r	1	<u>М</u>	MD				
						יים אינים. ניסמוספ grailled, daik blowil, with gravel, f	noist	***			TP3_0.2-0.3		
ш			_		CL	Sandy CLAY: Low plasticity, brown and orange of	colour, fine	М	MD				
						grained, moist							
									TD2 0 4 0 5				
			0.5								TP3_0.4-0.5		
Ш						TP3 terminated at 0.5m		М	St			Refusal at 0.5m on Sandstone.	
			_										
			-										
			-										
			1.0										
			_										
			-										
			_										
			_										
			1. <u>5</u>										
			_										
			_										
			_										
			-										
			2.0										

ADE_BOREHOLE 23.0722_TP-ADELAPTOP290.GPJ GINT STD AUSTRALIA.GDT 16/5/24

TEST PIT NUMBER TP4

CLIENT School Infrastructure NSW PROJECT NAME Cammeray Public School													
							PROJECT NAME Cammeray Public School PROJECT LOCATION 68 Palmer Street, Cammeray NSW						
												., Cammeray NSW	
						COMPLETED 26/4/24							
						Brefni							
			AMET	ER _().5m		LOGGED BY	AS			c	CHECKED BY KA	
NO	TES												
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations	
Ш						ASPHALT		D	Н				
				\bowtie		FILL: Gravelly SAND, coarse grained, brown, podry	orly graded,						
ш				\bowtie	SP	SAND: coarse grained, dark brown, with gravel,		D	Vst				
Ш					SF	SAND: coarse grained, dark brown, with graver,	moist	М	MD		TP4_0.2-0.3		
Ш						TP4 terminated at 0.3m		М	Н			Refusal at 0.3m on Sandstone.	
			0.5										
			_										
			-										
			_										
			_										
			1.0										
			_										
			_										
			_										
			_										
			1.5										
			_										
			_										
			-										
			-										
			0.0										

ADE_BOREHOLE 23.0722_TP-ADELAPTOP290.GPJ GINT STD AUSTRALIA.GDT 16/5/24

TEST PIT NUMBER TP5

	Telephone: 1300976922													
CLIENT School Infrastructure NSW PROJECT NAME Cammeray Public School														
PROJECT NUMBER A101023.0722 PROJECT LOCATION 68 Palmer Street, Cammeray NSW														
DA	TE S	TART	ED _	26/4/2	24	COMPLETED 26/4/24	R.L. SURFACI	E			r	DATUM		
EX	CAV	ATIO	OO COI	NTRAC	CTOR	Brefni	SLOPE	BEARING						
								RDINATES						
TES	ST P	IT DIA	MET	ER _C).5m		LOGGED BY	OGGED BY AS CHECKED BY KA						
NO	TES													
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations		
Ш						ASPHALT		D	Н					
			_											
Ш						FILL: Gravelly SAND, coarse grained, brown, podry	orly graded,	D	Vst					
Ш			_	XXX	CH	CLAY: fine grained, medium plasticity, white and colour	red/orange in	М	F		TD5 0000			
						- Solicul					TP5_0.2-0.3			
Ш						TP5 terminated at 0.4m		М	Н			Refusal at 0.4m on Sandstone.		
			0 <u>.5</u>											
			-											
			-											
			_											
			_											
			1 <u>.0</u>											
			-											
			_											
			_											
			_											
			1. <u>5</u>											
			_											
			_											
			_											
			_											
			2.0											

Appendix D: Soil Vapour Field Records

Soil Vapour Sampling

Appendix E: PID Calibration Certificate

Company: ADE Consulting Group (NSW) F

Contact: Michelle Ridley

Address: Unit 6

7 Millennium Court

Silverwater NSW 2128

Phone:

1300796922

Fax: Email:

michelle.ridley@ade.group

Manufacturer: RAE

Instrument: MINIRAE LITE SN: 595-002222 Model: MINIRAE LITE

Configuration: VOC 10.6EV

Wireless: -Network ID: -

Unit ID: -

Details:

Serial #: 595-002222

Asset #: PID 3

Part #: 059-A126-000

Sold: 20.02.2017

Last Cal: 03.03.2023 Job #: 152491

Cal Spec:

Order #: PID 3

Item	Test	Pass/Fail	Comments	Serial Number
Battery	NiCd, NiMH, Dry cell, Lilon	Р	_	
Charger	Power Supply	Р		
	Cradle, Travel Charger	Р		
Pump	Flow	Р	>450ml/min	
Filter	Filter, fitting, etc	х	Dirty, replaced	
Alarms	Audible, visual, vibration	Р		
Display	Operation	Р		
Switches	Operation	Р		
PCB	Operation	Р		
Connectors	Condition	Р		
Firmware	Version	Р	V2.22A Furnigation	
Datalogger	Operation	Р		
Monitor Housing	Condition	Р	Cleaned	
Case	Condition / Type			
Sensors				
PID	Lamp	Р	Cleaned	
PID	Sensor	Р	Cleaned	
THP	Sensor	Р		

Engineer's Report

Cleaned lamp, lamp housing and sensor electrode Checked moisture sensitivity
Checked flowrate and stall values Checked unit settings and PC configuration Unit serviced and calibrated.

Company: ADE Consulting Group (NSW) F

Contact: Michelle Ridley

Address: Unit 6

7 Millennium Court Silverwater NSW 2128

1300796922 Phone:

Fax:

Email:

michelle.ridley@ade.group

Manufacturer: RAE

Instrument: MINIRAE LITE SN: 595-002222

Model: MINIRAE LITE

Configuration: VOC 10.6EV

Wireless: -

Network ID: -Unit ID: -

Details:

Serial #: 595-002222

Asset #: PID 3

Part #: 059-A126-000

Sold: 20.02.2017 Last Cal: 03.03.2023

Job #: 152491 Cal Spec:

Order #: PID 3

Calibration Certificate

Sensor	Туре	Serial No.	Span	Concentration	Traceability	CF	Rea	ding
			Gas		Lot#		Zero	Span
Oxygen								
							<u> </u>	
LEL								
PID	050-0000-004, 10.6EV 1/ 2 INCH LAMP	S023060055TC/1062R01 2710	Isobutylene	100ppm	WO371138-58		0	100.0
Battery	059-3051-000. MINIRAE 3000 LI-ION BATTERY	159TCW0532						
Toxic 1			<u> </u>					
Toxic 2								
Toxic 3								
Toxic 4				/1				
Toxic 5								
Toxic 6	PGM-7350							

Calibrated/Repaired by:

JERRY JI

Date: 21.07.2023

Next Due: 21.01.2024

Company: ADE Consulting Group (NSW) F

Contact: Michelle Ridley

Address: Unit 6

7 Millennium Court

Silverwater NSW 2128

Phone: 1300796922

Fax:

Email: michelle.ridley@ade.group

Manufacturer: RAE

Instrument: MINIRAE LITE SN: 595-002222

Model: MINIRAE LITE

Configuration: VOC 10.6EV

Wireless: -

Network ID: -Unit ID: -

Details:

Serial #: 595-002222

Asset #: PID 3

Part #: 059-A126-000

Sold: 20.02.2017

Last Cal: 21.07.2023

Job #: 158433 Cal Spec:

Order #: PID'S/INF

Calibration Certificate

Sensor	Type	Serial No.	Span	Concentration	Traceability	CF	Rea	ding
			Gas		Lot#		Zero	Span
Oxygen								
LEL						7		
PID	050-0000-004. 10.6EV 1/ 2 INCH LAMP	S023060055TC/1062R01 2710	Isobutylene	100ppm	WO414472-7		0.0	100.0
Battery	059-3051-000. MINIRAE 3000 LI-ION BATTERY	159TCW0532						
Toxic 1								
Toxic 2								
Toxic 3								
Toxic 4							-	
Toxic 5								
Toxic 6	PGM-7350							

Calibrated/Repaired by:

JERRY JI

Date: 19.01.2024

Next Due: 19.07.2024

Company: ADE Consulting Group (NSW) F Manufacturer: RAE

Serial #: 595-002222

Contact:

Michelle Ridley

MINIRAE LITE SN: 595-002222 Instrument:

Asset #: PID 3

Address:

Part #: 059-A126-000

Unit 6

Model: MINIRAE LITE Configuration: VOC 10.6EV

Sold: 20.02.2017

7 Millennium Court Silverwater NSW 2128

Wireless: -

Last Cal: 21.07.2023

Phone: 1300796922 Network ID: -

Job #: 158433

Fax:

Unit ID: -

Cal Spec:

Email: michelle.ridley@ade.group

Details:

Order #: PID'S/INF

Item	Test	Pass/Fail	Comments	Serial Number
Battery	NiCd, NiMH, Dry cell, Lilon	Р		
Charger	Power Supply	Р		
	Cradle, Travel Charger	Р		
Pump	Flow	Р	>450ml/min	
Filter	Filter, fitting, etc	х	Replaced	
Alarms	Audible, visual, vibration	Р		
Display	Operation	Р		
Switches	Operation	Р		
РСВ	Operation	Р		
Connectors	Condition	Р		
Firmware	Version	Р	V2.22A Fumigation	
Datalogger	Operation	Р		
Monitor Housing	Condition	Р		
Case	Condition / Type			
Sensors				
PID	Lamp	Р	Cleaned	
PID	Sensor	Р	Cleaned	
THP	Sensor	Р		

Engineer's Report

Cleaned lamp, lamp housing and sensor electrode; checked moisture sensitivity Checked flowrate and stall values Checked unit settings and PC configuration Unit serviced and calibrated.

Appendix F: Results Summary Tables

Asbestos Physical Organic Inorganics Metals	
NEPM 2013 Table 1A(1) HILS Res A Soil Name of the part of the	
NEPM 2013 Table 1A(1) HILS Res A Soil 100 20 100 6,000 300	
	40 400 7,4
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand >=0m, <1m	
NEPM 2013 Table 18(7) Management Limits in Res / Parkland, Coarse Soil	
INCET II 2013 Table 10 (7) Mailagement Limits in res / Farkanu, Coase 3011	
Field ID Date Matrix Description	
C_BH01_0.2-0.3 12 Jan 2024 FILL N NT N	<0.10 57.4 51.
C_BH01_0.5-0.6 12 Jan 2024 NATURAL N NT N	<0.10 <1.0 9. i
C_BH02_0.2-0.3 12 Jan 2024 FILL N NT N	<0.10 15.9 19.
C_BH02_0.3-0.4 12 Jan 2024 NATURAL N NT N	3 <0.10 1.8 16 .
C_BH03_0.2-0.3 12 Jan 2024 FILL N NT N	
C_BH03_0.5-0.6 12 Jan 2024 NATURAL N NT N	<0.10 2.4 24.
C_BH04_0.2-0.3 12 Jan 2024 FILL N NT N	<0.10 65.8 70.
C_BH04_0.4-0.5 12 Jan 2024 NATURAL N NT N	
C_BH05_0.2-0.3 12 Jan 2024 FILL N NT NT 6.6 NT NT NT NT NT NT NT NT NT NT <5.0 <0.30 11.7 40.0 7.4	<0.10 41.2 39.
C_BH05_0.3-0.4 12 Jan 2024 NATURAL N NT NT 5.3 26 1,300 5.8 1.7 1.3 0.1 <0.1 3.1 <5.0 <0.30 5.4 <5.0 32.3	3 <0.10 4.2 5.
TP1_0.2-0.3	NT NT N
TP2_0.2-0.3 26 Apr 2024 FILL NT ND ND NT NT NT NT NT	NT NT N
TP3_0.2-0.3 26 Apr 2024 FILL NT ND ND NT	NT NT N
TP4_0.2-0.3	NT NT N
TP5_0.2-0.3 26 Apr 2024 FILL NT ND ND NT	NT NT N
BR 12 Jan 2024 FILL N NT NT S.6 NT S5.0 <0.30 15.3 45.3 11.8	3 <0.10 52.9 55.
SR 12 Jan 2024 FILL N NT NT 4.9 NT S4 <0.4 11 56 11	<0.1 42 33
Statistics	
Minimum Concentration	<0.1 <1 5
Maximum Concentration N 0 0 7.9 26 1,300 5.8 1.7 1.3 0.1 <0.1 3.1 5.4 0.43 26.6 64 32.3	3 <0.1 65.8 70

2013, NEPM 2013 Table 1A(1) HILs Res A Soil 2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil

 $\mu \text{S/cm}$ - Micro Siemens per centimetre

mg/kg - milligrams per kilo meq/100g - millequivalents per 100 grams of soil

BR - Intra-laboratory duplicate

SR - Inte-laboratory duplicate of

Notes:

1. Analysis and ID of Bulk Samples for Asbestos as per AS4964.

						ВТЕХ	,													PAH		
			Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	Naphthalene (VOC)	Total BTEX	Acenaphthene	Acenaphthylene	Anthracene	Benzo(b+j+k)fluorant hene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracen e	Fluoranthene	Fluorene	Indeno(1,2,3- c,d)pyrene
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NEPM 2013 Table 1A(1) H																						
		r Intrusion, Sand >=0m, <1m	0.5	160	55			40	3													
NEPM 2013 Table 1B(7) N	Management Limits in Res	/ Parkland, Coarse Soil																				
Field ID	Date	Matrix Description																				
C_BH01_0.2-0.3	12 Jan 2024	FILL	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	0.95	0.51	0.96	0.64	0.88	< 0.30	0.84	< 0.30	0.34
C_BH01_0.5-0.6	12 Jan 2024	NATURAL	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	0.71	0.52	< 0.30	< 0.30	1.02	< 0.30	0.99	< 0.30	< 0.30
C_BH02_0.2-0.3	12 Jan 2024	FILL	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
C_BH02_0.3-0.4	12 Jan 2024	NATURAL	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	0.31	< 0.30	0.32	< 0.30	0.31	< 0.30	0.47	< 0.30	< 0.30
C_BH03_0.2-0.3	12 Jan 2024	FILL	<0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30
C_BH03_0.5-0.6	12 Jan 2024	NATURAL	<0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
C_BH04_0.2-0.3	12 Jan 2024	FILL	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
C_BH04_0.4-0.5	12 Jan 2024	NATURAL	<0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30
C_BH05_0.2-0.3	12 Jan 2024	FILL	<0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	0.44	0.35	0.50	< 0.30	0.50	< 0.30	< 0.30	< 0.30	< 0.30
C_BH05_0.3-0.4	12 Jan 2024	NATURAL	<0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	<0.30	< 0.30
TP1_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP2_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP3_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP4_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP5_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BR	12 Jan 2024	FILL	<0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	<0.30	<0.30	<0.30	< 0.30	<0.30	< 0.30	<0.30	<0.30	< 0.30
SR	12 Jan 2024	FILL	<0.2	<0.5	<1	<2	<1	<1	<1	NT	< 0.1	<0.1	<0.1	<0.2	< 0.1	<0.05	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
Statistics																						
Minimum Concentration			<0.2	<0.5	<1	<2	<1	<1	<1	<2	<0.1	<0.1	<0.1	<0.2	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentration			<0.5	<0.5	<1	<2	<1	<2	<1	<2	<0.3	<0.3	<0.3	0.95	0.52	0.96	0.64	1.02	<0.3	0.99	<0.3	0.34

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil
2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand
NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil

 $\mu S/cm$ - Micro Siemens per centimetre

mg/kg - milligrams per kilo meq/100g - millequivalents per 100 grams of soil

BR - Intra-laboratory duplicate

SR - Inte-laboratory duplicate of

Notes:

1. Analysis and ID of Bulk Samples for Asbestos as per AS4964.

	Naphthalene	Phenanthrene	Pyrene	Benzo(a)pyrene TEQ calc (Half)	Benzo(a)pyrene TEQ (LOR)	Benzo(a)pyrene TEQ calc (Zero)	PAHs (Total)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NEPM 2013 Table 1A(1) HILs Res A Soil				3	3	3	300
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand >=0m, <1m	3						
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil							

Field ID	Date	Matrix Description	_						
C_BH01_0.2-0.3	12 Jan 2024	FILL	< 0.30	< 0.30	1.08	1.31	1.46	1.16	6.20
C_BH01_0.5-0.6	12 Jan 2024	NATURAL	< 0.30	0.44	1.30	0.45	0.77	< 0.30	4.98
C_BH02_0.2-0.3	12 Jan 2024	FILL	< 0.30	< 0.30	< 0.30	0.35	0.70	< 0.30	< 0.30
C_BH02_0.3-0.4	12 Jan 2024	NATURAL	< 0.30	< 0.30	0.48	0.54	0.72	0.35	1.89
C_BH03_0.2-0.3	12 Jan 2024	FILL	< 0.30	< 0.30	< 0.30	0.35	0.70	< 0.30	< 0.30
C_BH03_0.5-0.6	12 Jan 2024	NATURAL	< 0.30	< 0.30	< 0.30	0.35	0.70	< 0.30	< 0.30
C_BH04_0.2-0.3	12 Jan 2024	FILL	< 0.30	< 0.30	< 0.30	0.35	0.70	< 0.30	< 0.30
C_BH04_0.4-0.5	12 Jan 2024	NATURAL	< 0.30	< 0.30	< 0.30	0.35	0.70	< 0.30	< 0.30
C_BH05_0.2-0.3	12 Jan 2024	FILL	< 0.30	< 0.30	0.32	0.75	0.92	0.58	2.11
C_BH05_0.3-0.4	12 Jan 2024	NATURAL	< 0.30	< 0.30	< 0.30	0.35	0.70	< 0.30	< 0.30
TP1_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT
TP2_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT
TP3_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT
TP4_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT
TP5_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT
BR	12 Jan 2024	FILL	< 0.30	< 0.30	< 0.30	0.35	0.70	< 0.30	< 0.30
SR	12 Jan 2024	FILL	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5	< 0.5	< 0.05

Statistics							
Minimum Concentration	<0.1	<0.1	<0.1	0.35	<0.5	<0.3	<0.05
Maximum Concentration	<0.3	0.44	1.3	1.31	1.46	1.16	6.2

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil 2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil

 $\mu \text{S/cm}$ - Micro Siemens per centimetre

mg/kg - milligrams per kilo meq/100g - millequivalents per 100 grams of soil

BR - Intra-laboratory duplicate

SR - Inte-laboratory duplicate of

- 1. Analysis and ID of Bulk Samples for Asbestos as per AS4964.
- 2. Analytical method" polarised Light Microscopy with dispersion staining.

						PC	CBs							TRH						ТРН		
			Arochlor 1016	, Arochlor 1221	, Arochlor 1232	, Arochlor 1242	, Arochlor 1248	, Arochlor 1254	, Arochlor 1260	, PCBs (Sum of total)	, C6-C10 Fraction (F1)	C6-C10 (F1 minus BTEX)	>C10-C16 Fraction (F2)	>C10-C16 Fraction (F2 minus Naphthalene)	>C16-C34 Fraction (F3)	>C34-C40 Fraction	>C10-C40 Fraction (Sum)	C6-C9 Fraction	, C10-C14 Fraction	, C15-C28 Fraction	, C29-C36 Fraction	C.10-C36 Fraction (Sum)
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NEPM 2013 Table 1A(1) HILS										1												
		ir Intrusion, Sand >=0m, <1m										45		110								
NEPM 2013 Table 1B(7) Man	nagement Limits in Res	/ Parkland, Coarse Soil									700		1,000		2,500	10,000						
Field ID	Date	Matrix Description																				
C BH01 0.2-0.3	12 Jan 2024	FILL	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	<35	<35	<50	NT	113	151	264	<25	<50	<100	173	173
C BH01 0.5-0.6	12 Jan 2024	NATURAL	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	<35	<35	<50	NT	<100	<100	<100	<25	<50	<100	<100	<100
C_BH02_0.2-0.3	12 Jan 2024	FILL	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	<35	<35	<50	NT	<100	<100	<100	<25	<50	<100	103	103
C_BH02_0.3-0.4	12 Jan 2024	NATURAL	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	<35	<35	<50	NT	<100	<100	<100	<25	<50	<100	<100	<100
C_BH03_0.2-0.3	12 Jan 2024	FILL	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	<35	<35	<50	NT	<100	175	175	<25	<50	<100	162	162
C_BH03_0.5-0.6	12 Jan 2024	NATURAL	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	<35	<35	<50	NT	<100	<100	<100	<25	<50	<100	<100	<100
C_BH04_0.2-0.3	12 Jan 2024	FILL	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	<35	<35	<50	NT	<100	159	159	<25	<50	<100	147	147
C_BH04_0.4-0.5	12 Jan 2024	NATURAL	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	<35	<35	<50	NT	<100	111	111	<25	<50	<100	122	122
C_BH05_0.2-0.3	12 Jan 2024	FILL	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	<35	<35	<50	NT	<100	<100	<100	<25	<50	<100	<100	<100
C_BH05_0.3-0.4	12 Jan 2024	NATURAL	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	<35	<35	<50	NT	<100	<100	<100	<25	<50	<100	<100	<100
TP1_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP2_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP3_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP4_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP5_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BR	12 Jan 2024	FILL	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	<35	<35	<50	NT	139	225	364	<25	<50	<100	239	239
SR	12 Jan 2024	FILL	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<25	<25	<50	<50	200	420	620	<25	<50	<100	280	280
Statistics																						
Minimum Concentration			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<25	<50	<50	<100	<100	<100	<25	<50	<100	<100	<100
Maximum Concentration			<0.1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.1	<35	<35	<50	<50	200	420	620	<25	<50	<100	280	280
iviaxiiiuiii concentration			\0.5	\0.5	\U.5	\U.5	\0.5	\0.5	\0.5	\0.1	\33	\33	\30	\50	200	420	020		\30	\100	200	200

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil 2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil

 $\mu S/cm$ - Micro Siemens per centimetre

mg/kg - milligrams per kilo meq/100g - millequivalents per 100 grams of soil

BR - Intra-laboratory duplicate

SR - Inte-laboratory duplicate of

Notes:

1. Analysis and ID of Bulk Samples for Asbestos as per AS4964.

													Organ	ochlorine Pes	ticides								
			4,4-DDE	а-внс	Aldrin	b-BHC	Chlordane (cis)	Chlordane (trans)	д-внс	ggg	TOO	001+00E+000	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	Fenamiphos	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NEPM 2013 Table 1A(1) H					6							240	6				10					6	
		ır Intrusion, Sand >=0m, <1m																					
NEPM 2013 Table 1B(7) N	Management Limits in Res	/ Parkland, Coarse Soil																					
Field ID	Date	Matrix Description	_																				
C_BH01_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	< 0.20	<0.20	< 0.10	< 0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10
C_BH01_0.5-0.6	12 Jan 2024	NATURAL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	< 0.20	<0.20	< 0.10	< 0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10
C_BH02_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	< 0.20	<0.20	< 0.10	<0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10
C_BH02_0.3-0.4	12 Jan 2024	NATURAL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	< 0.20	< 0.20	< 0.10	< 0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10
C_BH03_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	< 0.20	< 0.20	< 0.10	< 0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10
C_BH03_0.5-0.6	12 Jan 2024	NATURAL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	< 0.20	<0.20	< 0.10	< 0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10
C_BH04_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	<0.20	< 0.20	<0.10	<0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10
C_BH04_0.4-0.5	12 Jan 2024	NATURAL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	< 0.20	< 0.20	<0.10	<0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10
C_BH05_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	<0.20	< 0.20	<0.10	<0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10
C_BH05_0.3-0.4	12 Jan 2024	NATURAL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	<0.20	<0.20	<0.10	<0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10
TP1_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP2_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP3_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP4_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP5_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BR	12 Jan 2024	FILL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	NT	<0.10	< 0.20	<0.20	<0.10	<0.20	< 0.10	< 0.10	NT	<0.10	< 0.10	< 0.10
SR	12 Jan 2024	FILL	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	NT	<0.1	<0.1	<0.1	< 0.1
Statistics																							
Minimum Concentration			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentration			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil
2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand
NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil

 $\mu\text{S/cm}$ - Micro Siemens per centimetre

mg/kg - milligrams per kilo meq/100g - millequivalents per 100 grams of soil

BR - Intra-laboratory duplicate

SR - Inte-laboratory duplicate of

Notes:

1. Analysis and ID of Bulk Samples for Asbestos as per AS4964.

														Organop	hosphorous F	esticides							
			Methoxychlor	× viiw Mg/kg	Azinophos methyl	Bromophos-ethyl	m % Chlorpyrifos	S Chlorpyrifos-methyl	Coumaphos	mg/kg	Diazinon mg/kg	Dichlorvos	Dimethoate	Disulfoton	Ethion By/kg	Ethoprop W S/8m	Mg/kgm Sak/gam	Renthion Sylvan	Malathion Malathion	Methidathion	ਤ ਲ ਅ Methyl parathion	공 쪽 Mevinphos (Phosdrin)	Bay/8m
NEPM 2013 Table 1A(1) H	HILC ROS A Soil		300	10	1116/116	1116/11/6	160	1116/116	1116/116	1115/115	1115/115	1116/116	1116/ NS	1115/115	1115/115	1116/116	1115/115	1116/146	1116/116	1116/116	IIIB/ NB	1115/115	IIIg/ Ng
		r Intrusion, Sand >=0m, <1m	300	10			100																
	Management Limits in Res																						
Field ID	Date	Matrix Description			,,		•								•								
C BH01 0.2-0.3	12 Jan 2024	FILL	< 0.10	l nt	NT	NT	<0.10	< 0.10	NT	< 0.10	<0.10	NT	NT	NT	NT	<0.10	NT	NT	NT	NT	< 0.10	NT	NT
C BH01 0.5-0.6	12 Jan 2024	NATURAL	<0.10	NT	NT	NT	<0.10	<0.10	NT	<0.10	<0.10	NT	NT	NT	NT	<0.10	NT	NT	NT	NT	<0.10	NT	NT
C BH02 0.2-0.3	12 Jan 2024	FILL	<0.10	NT	NT	NT	<0.10	<0.10	NT	<0.10	<0.10	NT	NT	NT	NT	<0.10	NT	NT	NT	NT	<0.10	NT	NT
C BH02 0.3-0.4	12 Jan 2024	NATURAL	< 0.10	NT	NT	NT	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT
C BH03 0.2-0.3	12 Jan 2024	FILL	< 0.10	NT	NT	NT	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT
C_BH03_0.5-0.6	12 Jan 2024	NATURAL	< 0.10	NT	NT	NT	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT
C_BH04_0.2-0.3	12 Jan 2024	FILL	< 0.10	NT	NT	NT	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT
C_BH04_0.4-0.5	12 Jan 2024	NATURAL	< 0.10	NT	NT	NT	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT
C_BH05_0.2-0.3	12 Jan 2024	FILL	< 0.10	NT	NT	NT	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT
C_BH05_0.3-0.4	12 Jan 2024	NATURAL	< 0.10	NT	NT	NT	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT
TP1_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP2_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP3_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP4_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP5_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BR	12 Jan 2024	FILL	< 0.10	NT	NT	NT	<0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT
SR	12 Jan 2024	FILL	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	NT	<0.1	<0.1	<0.1	< 0.1	< 0.1	NT	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
Statistics																							
Minimum Concentration			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentration	1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
inaximam concentration				1 .0.1	-0.1	~0.1	-0.1	10.1	-0.1	·0.1	-0.1	10.1	70.1	-V.1	-0.1	-0.1	-V.1	~V.1	-0.1	10.1	¬V.1	-V.1	

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil 2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil

 $\mu \text{S/cm}$ - Micro Siemens per centimetre

mg/kg - milligrams per kilo

meq/100g - millequivalents per 100 grams of soil

BR - Intra-laboratory duplicate

SR - Inte-laboratory duplicate of

Notes:

1. Analysis and ID of Bulk Samples for Asbestos as per AS4964.

Field ID	Date	Matrix Description	_			
C_BH01_0.2-0.3	12 Jan 2024	FILL	NT	< 0.10	< 0.10	NT
C_BH01_0.5-0.6	12 Jan 2024	NATURAL	NT	< 0.10	< 0.10	NT
C_BH02_0.2-0.3	12 Jan 2024	FILL	NT	< 0.10	< 0.10	NT
C_BH02_0.3-0.4	12 Jan 2024	NATURAL	NT	< 0.10	< 0.10	NT
C_BH03_0.2-0.3	12 Jan 2024	FILL	NT	< 0.10	< 0.10	NT
C_BH03_0.5-0.6	12 Jan 2024	NATURAL	NT	< 0.10	< 0.10	NT
C_BH04_0.2-0.3	12 Jan 2024	FILL	NT	< 0.10	< 0.10	NT
C_BH04_0.4-0.5	12 Jan 2024	NATURAL	NT	< 0.10	< 0.10	NT
C_BH05_0.2-0.3	12 Jan 2024	FILL	NT	< 0.10	< 0.10	NT
C_BH05_0.3-0.4	12 Jan 2024	NATURAL	NT	< 0.10	< 0.10	NT
TP1_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT
TP2_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT
TP3_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT
TP4_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT
TP5_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT
BR	12 Jan 2024	FILL	NT	< 0.10	< 0.10	NT
SR	12 Jan 2024	FILL	<0.1	<0.1	< 0.1	< 0.1

Statistics				
Minimum Concentration	<0.1	<0.1	<0.1	<0.1
Maximum Concentration	<0.1	<0.1	<0.1	<0.1

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil
2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand
NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil

 $\mu S/cm$ - Micro Siemens per centimetre

mg/kg - milligrams per kilo

meq/100g - millequivalents per 100 grams of soil

BR - Intra-laboratory duplicate

SR - Inte-laboratory duplicate of

Notes:

1. Analysis and ID of Bulk Samples for Asbestos as per AS4964.

2. Analytical method" polarised Light Microscopy with dispersion staining.

Table - E1: Analytical Results - Site criteria Cammeray Public School

			Perfluo	roalkane Sulfo	onic Acids						Perfluoro	alkane Carbo	xylic Acids				
		हुन हुन Sulfonic acid (PFBS)	স্ত্র Perfluoropentane জি sulfonic acid (PFPeS)	B Perfluorohexane জ sulfonic acid (PFHxS)	B Perfluoroheptane জি sulfonic acid (PFHpS)	B Perfluorooctane ଅଧି Sauffonic acid (PFOS)	Perfluorobutanoic	B Perfluoropentanoic කි acid (PFPeA)	B Perfluorohexanoic 점 acid (PFHxA)	Perfluoroheptanoic	Perfluorooctanoic	B Perfluorononanoic 점 acid (PFNA)	B Perfluorodecanoic කි acid (PFDA)	B Perfluoroundecanoic স্থি acid (PFUnDA)	B Perfluorododecanoic ଅଧି acid (PFDoDA)	Perfluorotridecanoic	Ba Perfluorotetradecanoi 자 c acid (PFTeDA)
PFAS NEMP 2020 Resident	ial with garden/accessible soil (HIL A)			0.01		0.01					0.1		1				
Field ID BR	Date 12 Jan 2024	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C BH01 0.2-0.3	12 Jan 2024	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
C_BH01_0.5-0.6	12 Jan 2024	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C_BH02_0.2-0.3	12 Jan 2024	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
C_BH02_0.3-0.4	12 Jan 2024	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C_BH03_0.2-0.3	12 Jan 2024	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C_BH03_0.5-0.6	12 Jan 2024	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C_BH04_0.2-0.3	12 Jan 2024	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C_BH04_0.4-0.5	12 Jan 2024	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
C_BH05_0.2-0.3	12 Jan 2024	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C_BH05_0.3-0.4	12 Jan 2024	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

Statistics

C_BH05_0.3-0.4

Statistics																
Minimum Concentration	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Maximum Concentration	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Average Concentration *	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025

NT

Environmental Standards

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

12 Jan 2024

12 Jan 2024

NT

NT

NT

NT

NT

NT

NT

NT

mg/kg - milligrams per kilo

^{*} A Non Detect Multiplier of 0.5 has been applied.

				Asbestos		Phy	sical	Organic			Inorg	ganics						Me	etals				
			Asbestos detected (Y/N) ¹	Bonded ACM (>7mm)	FA and AF (Fibrous Asbestos)²	Moisture Content	Electrical Conductivity (Non Compensated)	тос%	pH 1:5 soil:water	Exchangeable Calcium	Exchangeable Magnesium	Exchangeable Potassium	Exchangeable Sodium	Cation Exchange Capacity	Arsenic	Cadmium	Chromium (IIHVI)	Copper	peəŋ	Mercury	Nickel	Zinc	Benzene
			Y/N	%	%	%	μS/cm	mg/kg	-	meq/100g	meq/100g	meq/100g	meq/100g	meq/100g	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NSW 2014 General Soli	id Waste CT1 (No Leaching)													100	20			100	4	40		10
NSW 2014 General Soli	id Waste SCC1 (with leache	ed)													500	100			1,500	50	1,050		18
NSW 2014 Restricted S	olid Waste CT2 (No Leachin	ng)													400	80			400	16	160		40
NSW 2014 Restricted S	olid Waste SCC2 (with lead	hed)													2,000	400			6,000	200	4,200		72
Field ID	Date	Matrix Description						Ŷ	*														
C BH01 0.2-0.3	12 Jan 2024	FILL	N	NT	NT	5.9	NT	NT	NT	NT	NT	NT	NT	NT	<5.0	0.43	26.6	41.6	9.7	< 0.10	57.4	51.8	< 0.50
C BH01 0.5-0.6	12 Jan 2024	NATURAL	N	NT	NT	7.5	NT	NT	NT	NT	NT	NT	NT	NT	<5.0	0.32	19.2	<5.0	9.0	< 0.10	<1.0	9.8	< 0.50
C BH02 0.2-0.3	12 Jan 2024	FILL	N	NT	NT	5.8	NT	NT	NT	NT	NT	NT	NT	NT	5.4	0.42	23.8	17.0	13.9	< 0.10	15.9	19.5	< 0.50
C BH02 0.3-0.4	12 Jan 2024	NATURAL	N	NT	NT	3.4	NT	NT	NT	NT	NT	NT	NT	NT	<5.0	< 0.30	11.4	5.0	22.8	< 0.10	1.8	16.7	< 0.50
C_BH03_0.2-0.3	12 Jan 2024	FILL	N	NT	NT	3.9	NT	NT	NT	NT	NT	NT	NT	NT	<5.0	0.31	18.1	41.1	17.7	< 0.10	53.0	56.8	< 0.50
C_BH03_0.5-0.6	12 Jan 2024	NATURAL	N	NT	NT	7.9	NT	NT	NT	NT	NT	NT	NT	NT	<5.0	< 0.30	9.9	<5.0	8.3	< 0.10	2.4	24.5	< 0.50
C_BH04_0.2-0.3	12 Jan 2024	FILL	N	NT	NT	4.6	NT	NT	NT	NT	NT	NT	NT	NT	<5.0	< 0.30	19.7	64.0	7.8	< 0.10	65.8	70.0	< 0.50
C_BH04_0.4-0.5	12 Jan 2024	NATURAL	N	NT	NT	4.1	NT	NT	NT	NT	NT	NT	NT	NT	<5.0	< 0.30	12.1	12.4	18.6	< 0.10	12.2	16.6	< 0.50
C_BH05_0.2-0.3	12 Jan 2024	FILL	N	NT	NT	6.6	NT	NT	NT	NT	NT	NT	NT	NT	<5.0	< 0.30	11.7	40.0	7.4	< 0.10	41.2	39.9	< 0.50
C_BH05_0.3-0.4	12 Jan 2024	NATURAL	N	NT	NT	5.3	26	1.300	5.8	1.7	1.3	0.1	< 0.1	3.1	<5.0	< 0.30	5.4	<5.0	32.3	< 0.10	4.2	5.2	< 0.50
TP1_0.2-0.3	26 Apr 2024	FILL	NT	ND	ND	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP2_0.2-0.3	26 Apr 2024	FILL	NT	ND	ND	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP3_0.2-0.3	26 Apr 2024	FILL	NT	ND	ND	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP4_0.2-0.3	26 Apr 2024	FILL	NT	ND	ND	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP5_0.2-0.3	26 Apr 2024	FILL	NT	ND	ND	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BR	12 Jan 2024	FILL	NT	NT	NT	5.6	NT	NT	NT	NT	NT	NT	NT	NT	<5.0	< 0.30	15.3	45.3	11.8	< 0.10	52.9	55.8	< 0.50
SR	12 Jan 2024	FILL	NT	NT	NT	4.9	NT	NT	NT	NT	NT	NT	NT	NT	<4	< 0.4	11	56	11	< 0.1	42	33	< 0.2
Statistics																							
Number of Results			10	5	5	13	1	1	1	1	1	1	1	1	12	12	12	12	12	12	12	12	12
Number of Detects			0	0	0	13	1	1	1	1	1	1	0	1	1	4	12	9	12	0	11	12	0
Minimum Concentration	on		0	0	0	3.4	26	1,300	5.8	1.7	1.3	0.1	<0.1	3.1	<4	<0.3	5.4	5	7.4	<0.1	<1	5.2	<0.2
Maximum Concentration	on		0	0	0	7.9	26	1,300	5.8	1.7	1.3	0.1	<0.1	3.1	5.4	0.43	26.6	64	32.3	<0.1	65.8	70	<0.5
Standard Deviation *						1.3									0.86	0.11	6.2	23	7.5	0	25	21	0.043
95% UCL (Student's-t) '	*		1			6.146									3.147	0.285	18.58	39.31	18.08	0.05	42.14	44.3	0.26
						<u></u>										,	,	,	,				

^{*} A Non Detect Multiplier of 0.5 has been applied.

NSW EPA, November 2014, NSW 2014 General Solid Waste CT1 (No Leaching)
NSW EPA, November 2014, NSW 2014 General Solid Waste SCC1 (with leached)
NSW EPA, November 2014, NSW 2014 Restricted Solid Waste CT2 (No Leaching)
NSW EPA, November 2014, NSW 2014 Restricted Solid Waste SCC2 (with leached)

- Analysis and ID of Bulk Samples for Asbestos as per AS4964.
- 2. Analytical method: Polarised Light Microscopy with dispersion staining.

					ВТ	TEX											Р	'AH					
			Toluene	Ethylbenzene	Kylene (m & p)	kylene (o)	Kylene Total	Naphthalene (VOC)	fotal BTEX	Acenaphthene	Acenaphthylene	Anthracene	Benzo(b+j+k)fluorant hene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracen e	Fluoranthene	Fluorene	ndeno(1,2,3- c,d)pyrene	Naphthalene	Phenanthrene
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NSW 2014 General Sol	lid Waste CT1 (No Leac	hing)	288	600			1,000								0.8								
NSW 2014 General Sol	lid Waste SCC1 (with le	ached)	518	1,080			1,800								10								
NSW 2014 Restricted S	Solid Waste CT2 (No Le	aching)	1,152	2,400			4,000								3.2								
NSW 2014 Restricted S	Solid Waste SCC2 (with	leached)	2,073	4,320			7,200								23								
Field ID	Date	Matrix Description	•																				
C BH01 0.2-0.3	12 Jan 2024	FILL	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	0.95	0.51	0.96	0.64	0.88	< 0.30	0.84	< 0.30	0.34	< 0.30	< 0.30
C BH01 0.5-0.6	12 Jan 2024	NATURAL	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	0.71	0.52	< 0.30	< 0.30	1.02	< 0.30	0.99	< 0.30	< 0.30	< 0.30	0.44
C BH02 0.2-0.3	12 Jan 2024	FILL	<0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	<0.30	<0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
C BH02 0.3-0.4	12 Jan 2024	NATURAL	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	0.31	< 0.30	0.32	< 0.30	0.31	< 0.30	0.47	< 0.30	< 0.30	< 0.30	< 0.30
C BH03 0.2-0.3	12 Jan 2024	FILL	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
C BH03 0.5-0.6	12 Jan 2024	NATURAL	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
C BH04 0.2-0.3	12 Jan 2024	FILL	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
C BH04 0.4-0.5	12 Jan 2024	NATURAL	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
C BH05 0.2-0.3	12 Jan 2024	FILL	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	0.44	0.35	0.50	< 0.30	0.50	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
C BH05 0.3-0.4	12 Jan 2024	NATURAL	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
TP1 0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP2 0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP3 0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP4_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP5_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BR	12 Jan 2024	FILL	< 0.50	<1.0	<2.0	<1.0	<2.0	NT	<2.00	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
SR	12 Jan 2024	FILL	< 0.5	<1	<2	<1	<1	<1	NT	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.05	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Statistics		·								1													
Number of Results			12	12	12	12	12	1	11	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Number of Detects			0	0	0	0	0	0	0	0	0	0	4	3	3	1	4	0	3	0	1	0	1
Minimum Concentrati			<0.5	<1	<2	<1	<1	<1	<2	<0.1	<0.1	<0.1	<0.2	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentrati	ion		<0.5	<1	<2	<1	<2	<1	<2	<0.3	<0.3	<0.3	0.95	0.52	0.96	0.64	1.02	<0.3	0.99	<0.3	0.34	<0.3	0.44
Standard Deviation *			0	0	0	0	0.14		0	0.029	0.029	0.029	0.27	0.15	0.25	0.15	0.32	0.029	0.31	0.029	0.064	0.029	0.091
95% UCL (Student's-t)	*		0.25	0.5	1	0.5	1.033		1	0.157	0.157	0.157	0.437	0.299	0.381	0.259	0.482	0.157	0.455	0.157	0.191	0.157	0.213
				•	•		•	•			•					•		_	•	•	-		$\overline{}$

^{*} A Non Detect Multiplier of 0.5 has been applied.

NSW EPA, November 2014, NSW 2014 General Solid Waste CT1 (No Leaching)
NSW EPA, November 2014, NSW 2014 General Solid Waste SCC1 (with leached)
NSW EPA, November 2014, NSW 2014 Restricted Solid Waste CT2 (No Leaching)
NSW EPA, November 2014, NSW 2014 Restricted Solid Waste SCC2 (with leached)

- Analysis and ID of Bulk Samples for Asbestos as per AS4964.
- 2. Analytical method: Polarised Light Microscopy with dispersion staining.

													-									
								PC	Bs				Halogenated Benzenes			TPH						
			Pyrene	PAHs (Total)	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Sum of total)	Hexachlorobenzene	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Sum)	4,4-DDE	а-ВНС	Aldrin	р-внс
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	olid Waste CT1 (No Leach			200								50		650				10,000				
	olid Waste SCC1 (with lea			200								50		650				10,000				
	Solid Waste CT2 (No Lea			800								50		2,600				40,000				
NSW 2014 Restricted	Solid Waste SCC2 (with I	eached)		800								50		2,600				40,000				
Field ID	Date	Matrix Description																				
C_BH01_0.2-0.3	12 Jan 2024	FILL	1.08	6.20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	<0.10	<25	<50	<100	173	173	< 0.10	< 0.10	< 0.10	< 0.10
C_BH01_0.5-0.6	12 Jan 2024	NATURAL	1.30	4.98	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	NT	<0.10	<25	<50	<100	<100	<100	< 0.10	< 0.10	< 0.10	< 0.10
C_BH02_0.2-0.3	12 Jan 2024	FILL	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	NT	< 0.10	<25	<50	<100	103	103	< 0.10	< 0.10	< 0.10	< 0.10
C_BH02_0.3-0.4	12 Jan 2024	NATURAL	0.48	1.89	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	NT	< 0.10	<25	<50	<100	<100	<100	< 0.10	< 0.10	< 0.10	< 0.10
C_BH03_0.2-0.3	12 Jan 2024	FILL	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	<0.10	<25	<50	<100	162	162	< 0.10	< 0.10	< 0.10	< 0.10
C_BH03_0.5-0.6	12 Jan 2024	NATURAL	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	<0.10	<25	<50	<100	<100	<100	<0.10	< 0.10	< 0.10	< 0.10
C_BH04_0.2-0.3	12 Jan 2024	FILL	< 0.30	< 0.30	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	< 0.10	<25	<50	<100	147	147	< 0.10	< 0.10	<0.10	< 0.10
C_BH04_0.4-0.5	12 Jan 2024	NATURAL	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	< 0.10	<25	<50	<100	122	122	< 0.10	< 0.10	<0.10	< 0.10
C_BH05_0.2-0.3	12 Jan 2024	FILL	0.32	2.11	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NT	< 0.10	<25	<50	<100	<100	<100	< 0.10	< 0.10	<0.10	< 0.10
C_BH05_0.3-0.4	12 Jan 2024	NATURAL	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	NT	< 0.10	<25	<50	<100	<100	<100	< 0.10	< 0.10	<0.10	< 0.10
TP1_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP2_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP3_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP4_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP5_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BR	12 Jan 2024	FILL	<0.30	<0.30	< 0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	NT	<0.10	<25	<50	<100	239	239	< 0.10	<0.10	<0.10	< 0.10
SR	12 Jan 2024	FILL	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	280	280	<0.1	<0.1	<0.1	<0.1
Statistics			_																			
Number of Results		·	12	12	12	12	12	12	12	12	12	1	12	12	12	12	12	12	12	12	12	12
Number of Detects		<u> </u>	4	4	0	0	0	0	0	0	0	0	0	0	0	0	7	7	0	0	0	0
Minimum Concentra	tion		<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<100	<0.1	<0.1	<0.1	<0.1
Maximum Concentra	tion		1.3	6.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<25	<50	<100	280	280	<0.1	<0.1	<0.1	<0.1
Standard Deviation *		•	0.41	2.1	0.058	0.058	0.058	0.058	0.058	0.058	0.058		0	0	0	0	80	80	0	0	0	0
95% UCL (Student's-t) *		0.568	2.453	0.263	0.263	0.263	0.263	0.263	0.263	0.263		0.05	12.5	25	50	164.3	164.3	0.05	0.05	0.05	0.05
	nlier of 0.5 has been appli																					

^{*} A Non Detect Multiplier of 0.5 has been applied.

NSW EPA, November 2014, NSW 2014 General Solid Waste CT1 (No Leaching)
NSW EPA, November 2014, NSW 2014 General Solid Waste SCC1 (with leached)
NSW EPA, November 2014, NSW 2014 Restricted Solid Waste CT2 (No Leaching)
NSW EPA, November 2014, NSW 2014 Restricted Solid Waste SCC2 (with leached)

- Analysis and ID of Bulk Samples for Asbestos as per AS4964.
- 2. Analytical method: Polarised Light Microscopy with dispersion staining.

									Organ	ochlorine Pe	sticides												
			Chlordane (cis)	, Chlordane (trans)	д-внс	000	TOO,	, DDT+DDE+DDD	. Dieldrin	. Endosulfan I	, Endosulfan II	. Endosulfan sulphate	. Endrin	. Endrin aldehyde	. Endrin ketone	, Fenamiphos	. g-BHC (Lindane)	. Heptachlor	. Heptachlor epoxide	Methoxychlor	Mirex	, Azinophos methyl	. Bromophos-ethyl
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NSW 2014 General Sol		U/																					
NSW 2014 General Sol NSW 2014 Restricted S																							
	Solid Waste CT2 (No Lea																						
14344 ZO14 Restricted S	onu waste SCC2 (With	leauleuj																					
Field ID	Date	Matrix Description																					
C_BH01_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	NT	< 0.10	<0.20	< 0.20	< 0.10	<0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10	< 0.10	NT	NT	NT
C_BH01_0.5-0.6	12 Jan 2024	NATURAL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	<0.20	<0.20	< 0.10	<0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10	< 0.10	NT	NT	NT
C_BH02_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	<0.20	<0.20	< 0.10	< 0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10	< 0.10	NT	NT	NT
C_BH02_0.3-0.4	12 Jan 2024	NATURAL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	< 0.20	< 0.20	< 0.10	< 0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10	< 0.10	NT	NT	NT
C_BH03_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	< 0.20	< 0.20	< 0.10	< 0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10	< 0.10	NT	NT	NT
C_BH03_0.5-0.6	12 Jan 2024	NATURAL	< 0.10	< 0.10	<0.10	<0.10	< 0.10	NT	< 0.10	<0.20	<0.20	< 0.10	<0.20	<0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10	< 0.10	NT	NT	NT
C_BH04_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	<0.10	<0.10	< 0.10	NT	< 0.10	< 0.20	<0.20	< 0.10	<0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10	< 0.10	NT	NT	NT
C_BH04_0.4-0.5	12 Jan 2024	NATURAL	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	NT	< 0.10	< 0.20	<0.20	< 0.10	<0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10	< 0.10	NT	NT	NT
C_BH05_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	NT	< 0.10	<0.20	<0.20	< 0.10	< 0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10	< 0.10	NT	NT	NT
C_BH05_0.3-0.4	12 Jan 2024	NATURAL	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NT	< 0.10	<0.20	< 0.20	< 0.10	< 0.20	< 0.10	< 0.10	NT	< 0.10	< 0.10	< 0.10	< 0.10	NT	NT	NT
TP1_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP2_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP3_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP4_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP5_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BR	12 Jan 2024	FILL	<0.10	<0.10	<0.10	<0.10	<0.10	NT	< 0.10	<0.20	<0.20	< 0.10	<0.20	<0.10	<0.10	NT	<0.10	<0.10	< 0.10	<0.10	NT	NT	NT
SR	12 Jan 2024	FILL	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Statistics																							
Number of Results			12	12	12	12	12	1	12	12	12	12	12	12	11	1	12	12	12	12	1	1	1
Number of Detects			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentrati	on		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentrati	***		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Standard Deviation *			0	0	0	0	0	-	0	0.014	0.014	0	0.014	0	0		0	0	0	0		 	
95% UCL (Student's-t)	*		0.05	0.05	0.05	0.05	0.05		0.05	0.103	0.103	0.05	0.103	0.05	0.05		0.05	0.05	0.05	0.05			
* A Non Dotoct Multin			0.03	3.03	1 0.03	0.03	1 0.00	1	1 0.00	0.103	1 0.103	0.03	1 5.105	1 0.03	1 5.05	1	1 0.00	1 0.00	1 5.05	0.03			

^{*} A Non Detect Multiplier of 0.5 has been applied.

NSW EPA, November 2014, NSW 2014 General Solid Waste CT1 (No Leaching)
NSW EPA, November 2014, NSW 2014 General Solid Waste SCC1 (with leached)
NSW EPA, November 2014, NSW 2014 Restricted Solid Waste CT2 (No Leaching)
NSW EPA, November 2014, NSW 2014 Restricted Solid Waste SCC2 (with leached)

- Analysis and ID of Bulk Samples for Asbestos as per AS4964.
- 2. Analytical method: Polarised Light Microscopy with dispersion staining.

										Organop	hosphorous	Pesticides										Other	l
			mg/kg Chlorpyrifos	ভ্ৰ Chlorpyrifos-methyl	Coumaphos	mg/kg	Djazinon Mg/kg	Dichlorvos	By/Z Dimethoate	Disulfoton	Ethion mg/kg	mg/kg	Ba//Senitrothion	By/8a	mg/kg Malathion	Methidathion	B Methyl parathion	Mevinphos (Phosdrin)	By/88	mg/kg	Ro nne l	B A Phosalone	Berfluorobutane ਲੋੜ sulfonic acid (PFBS)
NCM 2014 Conoral Col	lid Waste CT1 (No Leach	inal	111g/ kg	IIIg/ Kg	IIIg/kg	IIIg/ kg	IIIg/ kg	IIIg/ kg	IIIg/ Kg	IIIg/ kg	IIIg/ kg	IIIg/ kg	IIIg/ kg	IIIg/ kg	IIIg/ kg	IIIg/kg	IIIg/ kg	IIIg/ kg	IIIg/ kg	IIIg/ kg	IIIg/ kg	IIIg/ kg	IIIg/ kg
	lid Waste CTT (No Leach		7.5																				
	Solid Waste CT2 (No Lea	•	16																				
	Solid Waste SCC2 (with		30																				
TOTAL TOTAL MESTIFICIENT	Jone State Secz (With	concap																					
Field ID	Date	Matrix Description																					
C_BH01_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	< 0.10	NT	< 0.005
C_BH01_0.5-0.6	12 Jan 2024	NATURAL	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	< 0.10	NT	NT
C_BH02_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	< 0.10	NT	< 0.005
C_BH02_0.3-0.4	12 Jan 2024	NATURAL	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	< 0.10	NT	NT
C_BH03_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	< 0.10	NT	NT
C_BH03_0.5-0.6	12 Jan 2024	NATURAL	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	< 0.10	NT	NT
C_BH04_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	< 0.10	NT	NT
C_BH04_0.4-0.5	12 Jan 2024	NATURAL	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	< 0.10	NT	< 0.005
C_BH05_0.2-0.3	12 Jan 2024	FILL	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	< 0.10	NT	NT
C_BH05_0.3-0.4	12 Jan 2024	NATURAL	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	< 0.10	NT	NT
TP1_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP2_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP3_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP4_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP5_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BR	12 Jan 2024	FILL	< 0.10	< 0.10	NT	< 0.10	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	NT	< 0.10	NT	NT	NT	<0.10	NT	NT
SR	12 Jan 2024	FILL	< 0.1	<0.1	< 0.1	NT	<0.1	< 0.1	<0.1	<0.1	<0.1	NT	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	NT
Statistics			_																				
Number of Results			12	12	1	11	12	1	1	1	1	11	1	1	1	1	12	1	1	1	12	1	3
Number of Detects	·		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentrati	on		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.005
Maximum Concentrat	ion		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.005
Standard Deviation *			0	0		0	0					0					0				0		0
95% UCL (Student's-t)	*	•	0.05	0.05		0.05	0.05					0.05					0.05				0.05		0.0025
* A Non Detect Multin			_																			$\overline{}$	$\overline{}$

^{*} A Non Detect Multiplier of 0.5 has been applied.

NSW EPA, November 2014, NSW 2014 General Solid Waste CT1 (No Leaching)
NSW EPA, November 2014, NSW 2014 General Solid Waste SCC1 (with leached)
NSW EPA, November 2014, NSW 2014 Restricted Solid Waste CT2 (No Leaching)
NSW EPA, November 2014, NSW 2014 Restricted Solid Waste SCC2 (with leached)

- Analysis and ID of Bulk Samples for Asbestos as per AS4964.
- 2. Analytical method: Polarised Light Microscopy with dispersion staining.

			Perfluor	oalkane Sulfo	nic Acids						Perfluoro	alkane Carbo	xylic Acids				
			Perfluoropentane sulfonic acid (PFPeS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluoroheptane sulfonic acid (PFHpS)	Perfluorooctane sulfonic acid (PFOS)	Perfluorobutanoic acid (PFBA)	Perfluoropentanoic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	Perfluorononanoic acid (PFNA)	Perfluorodecanoic acid (PFDA)	Perfluoroundecanoic acid (PFUnDA)	Perfluorododecanoic acid (PFDoDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluorotetradecanoi c acid (PFTeDA)
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	d Waste CT1 (No Leaching																
	d Waste SCC1 (with leache										18						
	olid Waste CT2 (No Leachi																
NSW 2014 Restricted S	olid Waste SCC2 (with lead	:hed)									72						
Field ID	Date	Matrix Description															
C_BH01_0.2-0.3	12 Jan 2024	FILL	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005
C_BH01_0.5-0.6	12 Jan 2024	NATURAL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C_BH02_0.2-0.3	12 Jan 2024	FILL	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005
C_BH02_0.3-0.4	12 Jan 2024	NATURAL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C_BH03_0.2-0.3	12 Jan 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C_BH03_0.5-0.6	12 Jan 2024	NATURAL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C_BH04_0.2-0.3	12 Jan 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C_BH04_0.4-0.5	12 Jan 2024	NATURAL	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005
C_BH05_0.2-0.3	12 Jan 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
C_BH05_0.3-0.4	12 Jan 2024	NATURAL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP1_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP2_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP3_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP4_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP5_0.2-0.3	26 Apr 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BR	12 Jan 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
SR	12 Jan 2024	FILL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Statistics			_														
Number of Results			3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Number of Detects					0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration					<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

^{*} A Non Detect Multiplier of 0.5 has been applied.

Maximum Concentration

Standard Deviation *

95% UCL (Student's-t) *

NSW EPA, November 2014, NSW 2014 General Solid Waste CT1 (No Leaching) NSW EPA, November 2014, NSW 2014 General Solid Waste SCC1 (with leached) NSW EPA, November 2014, NSW 2014 Restricted Solid Waste CT2 (No Leaching) NSW EPA, November 2014, NSW 2014 Restricted Solid Waste SCC2 (with leached)

<0.005

0

0.0025

<0.005

0

0.0025

<0.005

0

0.0025

<0.005

0

0.0025

<0.005

0

0.0025

<0.005

0

<0.005

0

0.0025 0.0025

<0.005

0

0.0025 0.0025

<0.005

0

<0.005

0

0.0025

<0.005

0

0.0025

<0.005

0

0.0025

<0.005

0

0.0025

<0.005

0.0025

<0.005

0.0025

- 1. Analysis and ID of Bulk Samples for Asbestos as per AS4964.
- 2. Analytical method: Polarised Light Microscopy with dispersion staining.

						SV01 02 May 2024	SV02 02 May 2024	SV03 02 May 2024
	Unit	EQL	NEPM 2013 Table 1A(2) Res A Soil Vap VOCC HILs	Res Soil V A/B for Intrusio	Table 1A(5) /apour HSL · Vapour on, Sand >=1m, <2m	02 Way 2024	U2 Way 2024	02 May 2024
Inorganics				r only tan	2, 12			
Temperature as Received Pressure	°C	0.1				21.0	21.0	21.0
Vacuum - As received Pressure - As received	Inches Hg kPa	0.03 0.1				9.66 67.9	8.89 70.4	2.01 93.7
Pressure - Laboratory Atmosphere	kPa	0.1				100	100	100
BTEX								
Benzene	ppmv mg/m3	0.03		1	3	<0.0300 <0.100	<0.0300 <0.100	<0.0300 <0.100
Toluene	ppmv mg/m3	0.05 0.19		1,300	3,800	0.0627 0.236	<0.0500 <0.190	<0.0500 <0.190
Ethylbenzene	ppmv mg/m3	0.05 0.22		330	1,100	<0.0500 <0.220	<0.0500 <0.220	<0.0500 <0.220
Xylene (m & p)	ppmv mg/m3	0.1 0.43				<0.100 <0.430	<0.100 <0.430	<0.100 <0.430
Xylene (o)	ppmv	0.05				<0.0500	<0.0500	<0.0500
Xylene Total	mg/m3 mg/m3	0.22 0.65		220	750	<0.220 <0.650	<0.220 <0.650	<0.220 <0.650
MAH 1,2,4-trimethylbenzene	ppmv	0.05				<0.0500	<0.0500	<0.0500
1,3,5-trimethylbenzene	mg/m3 ppmv	0.24 0.05				<0.240 <0.0500	<0.240 <0.0500	<0.240 <0.0500
	mg/m3	0.24				<0.240	<0.240	<0.240 <0.0500
1-methyl-4 ethyl benzene	ppmv mg/m3	0.05				<0.0500 <0.240	<0.0500 <0.240	< 0.240
Styrene Styrene	ppmv mg/m3	0.05 0.21				<0.0500 <0.210	<0.0500 <0.210	<0.0500 <0.210
PAH Naphthalene	ppmv	0.019				<0.0190	<0.0190	<0.0190
Naphthalene	mg/m3	0.1		0.8	3	<0.100	<0.100	<0.100
Halogenated Benzenes 1,2,4-trichlorobenzene	ppmv	0.05				<0.0500	<0.0500	<0.0500
1,2-dichlorobenzene	mg/m3 ppmv	0.37 0.05				<0.370 <0.0500	<0.370 <0.0500	<0.370 <0.0500
1,3-dichlorobenzene	mg/m3 ppmv	0.3 0.05				<0.300 <0.0500	<0.300 <0.0500	<0.300 <0.0500
1,4-dichlorobenzene	mg/m3	0.3				<0.300 <0.0500	<0.300 <0.0500	<0.300 <0.0500
	mg/m3	0.3				< 0.300	< 0.300	< 0.300
2-chlorotoluene	ppmv mg/m3	0.05 0.26				<0.0500 <0.260	<0.0500 <0.260	<0.0500 <0.260
Chlorobenzene Chlorobenzene	ppmv mg/m3	0.05				<0.0500 <0.230	<0.0500 <0.230	<0.0500 <0.230
Chlorinated Hydrocarbons Vinyl chloride	ppmv	0.002				<0.0020	<0.0020	<0.0020
	mg/m3	0.0051	0.03			< 0.0051	< 0.0051	< 0.0051
Dichloromethane	ppmv mg/m3	0.05 0.17				<0.0500 <0.170	<0.0500 <0.170	<0.0500 <0.170
cis-1,2-dichloroethene	ppmv μg/m3	0.005 20	80			<0.0050 <20.0	<0.0050 <20.0	<0.0050 <20.0
1,1-dichloroethene	ppmv μg/m3	0.05 200				<0.0500 <200	<0.0500 <200	<0.0500 <200
trans-1,2-dichloroethene	ppmv	0.05				< 0.0500	<0.0500	< 0.0500
1,2-dichloroethane	mg/m3 ppmv	0.2				<0.200 <0.0500	<0.200 <0.0500	<0.200 <0.0500
Chloroform	mg/m3 ppmv	0.2				<0.200 <0.0500	<0.200 <0.0500	<0.200 <0.0500
Trichloroethene	mg/m3 ppmv	0.24				<0.240 <0.0010	<0.240 <0.0010	<0.240 <0.0010
1,1,1-trichloroethane	mg/m3 ppmv	0.0054	0.02			<0.0054 <0.0500	<0.0054 <0.0500	<0.0054 <0.0500
	mg/m3	0.27	60			<0.270	< 0.270	< 0.270
1,1,2-trichloroethane	ppmv mg/m3	0.05 0.27				<0.0500 <0.270	<0.0500 <0.270	<0.0500 <0.270
Carbon tetrachloride	ppmv mg/m3	0.05 0.31				<0.0500 <0.310	<0.0500 <0.310	<0.0500 <0.310
Tetrachloroethene	ppmv mg/m3	0.05	2			<0.0500 <0.340	<0.0500 <0.340	<0.0500 <0.340
1,1,2,2-tetrachloroethane	ppmv mg/m3	0.05 0.34				<0.0500 <0.340	<0.0500 <0.340	<0.0500 <0.340
Hexachlorobutadiene	ppmv	0.05				<0.0500 <0.530	< 0.0500	< 0.0500
1,1-dichloroethane	mg/m3 ppmv	0.53 0.05				<0.0500	<0.530 <0.0500	<0.530 <0.0500
1,2-dichloropropane	mg/m3 ppmv	0.2				<0.200 <0.0500	<0.200 <0.0500	<0.200 <0.0500
Benzyl chloride	mg/m3 ppmv	0.23				<0.230 <0.0500	<0.230 <0.0500	<0.230 <0.0500
Bromodichloromethane	mg/m3	0.26				<0.260 <0.0500	<0.260 <0.0500	<0.260 <0.0500
	mg/m3	0.34				< 0.340	< 0.340	<0.340 <0.0500
Bromoform	ppmv mg/m3	0.05				<0.0500 <0.520	<0.0500 <0.520	< 0.520
Chlorodibromomethane	ppmv mg/m3	0.05 0.43				<0.0500 <0.430	<0.0500 <0.430	<0.0500 <0.430
Chloroethane	ppmv mg/m3	0.05 0.13				<0.0500 <0.130	<0.0500 <0.130	<0.0500 <0.130
Chloromethane	ppmv mg/m3	0.05				<0.0500 <0.100	<0.0500 <0.100	<0.0500 <0.100
cis-1,3-dichloropropene	ppmv	0.05				<0.0500	< 0.0500	<0.0500
trans-1,3-dichloropropene	mg/m3 ppmv	0.23 0.05				<0.230 <0.0500	<0.230 <0.0500	<0.230 <0.0500
trans-1,3-dichloropropene Halogenated Hydrocarbons	mg/m3	0.23				<0.230	<0.230	<0.230
1,2-dibromoethane	ppmv mg/m3	0.05				<0.0500 <0.380	<0.0500 <0.380	<0.0500 <0.380
Bromomethane	ppmv	0.05				<0.0500	< 0.0500	< 0.0500
Dichlorodifluoromethane	mg/m3 ppmv	0.19 0.05				<0.190 <0.0500	<0.190 <0.0500	<0.190 <0.0500
Trichlorofluoromethane	mg/m3 ppmv	0.25 0.05				<0.250 <0.0500	<0.250 <0.0500	<0.250 <0.0500
Trichlorofluoromethane	mg/m3	0.28				<0.280	<0.280	<0.280

Number of Detects	Maximum Conc.
3	21
3	9.66 93.7
3	100
0	<0.03
1	<0.1 0.0627
0	0.236 <0.05
0	<0.22 <0.1
0	<0.43 <0.05
0	<0.22
0	<0.65
0	<0.05 <0.24
0	<0.05
0	<0.24 <0.05
0	<0.24 <0.05
0	<0.21
0	<0.019 <0.1
0	<0.05
0	<0.37 <0.05
0	<0.3
0	<0.05 <0.3
0	<0.05 <0.3
0	<0.05 <0.26
0	<0.05
0	<0.23
0	<0.002 <0.0051
0	<0.05 <0.17
0	<0.005 <20
0	<0.05
0	<200 <0.05
0	<0.2 <0.05
0	<0.2 <0.05
0	<0.24
0	<0.001 <0.0054
0	<0.05 <0.27
0	<0.05 <0.27
0	<0.05
0	<0.31 <0.05
0	<0.34 <0.05
0	<0.34 <0.05
0	<0.53 <0.05
0	<0.2
0	<0.05 <0.23
0	<0.05 <0.26
0	<0.05 <0.34
0	<0.05
0	<0.52 <0.05
0	<0.43 <0.05
0	<0.13 <0.05
0	<0.1
0	<0.05 <0.23
0	<0.05 <0.23
0	<0.05
0	<0.05 <0.19
0	<0.05 <0.25
0	<0.05
0	<0.28

Number of

Detects

Maximum

<20 <5 <35

<37 <5 <16.5 <5 <20 <5 <20

<0.5 <2.5 <0.2 <1.4 <0.05 <0.16 <0.7 <3 0.058 0.218 <1.25 <5 <20

						SV01 02 May 2024	SV02 02 May 2024	SV03 02 May 202
			NEPM 2013 Table 1A(2) Res A Soil Vap VOCC HILs	Res Soil V A/B for Intrusio	Table 1A(5) Tapour HSL Vapour on, Sand		,	,
	Unit	EQL		>=0m, <1m	>=1m, <2m		I	
H C6-C9 Fraction	nnmv	5				<5.00	<5.00	<5.00
C6-C9 Fraction	ppmv mg/m3	20				<20.0	<20.0	<20.0
C10-C14 Fraction	ppmv	5				<5.00	<5.00	<5.00
	mg/m3	35				<35.0	<35.0	<35.0
Aliphatic >C10-C12	ppmv	5				<5.00	<5.00	<5.00
Aliphatic >C10-C16	mg/m3 ppmv	30 5				<30.0 <5.00	<30.0 <5.00	<30.0 <5.00
Allphatic >C10-C10	mg/m3	37				<37.0	<37.0	<37.0
Aliphatic >C5-C6	ppmv	5				<5.00	<5.00	<5.00
	mg/m3	16.5				<16.5	<16.5	<16.5
Aliphatic >C6-C10	ppmv	5 20				<5.00 <20.0	<5.00 <20.0	<5.00 <20.0
Aliphatic >C6-C8	mg/m3 ppmv	5				<5.00	<5.00	<5.00
	mg/m3	20				<20.0	<20.0	<20.0
Aliphatic >C8-C10	ppmv	5				<5.00	<5.00	<5.00
A	mg/m3	25				<25.0	<25.0	<25.0
Aromatic >C10-C12	ppmv mg/m3	0.5 2.5				<0.500 <2.50	<0.500 <2.50	<0.500 <2.50
Aromatic >C10-C16	ppmv	0.2				<0.200	<0.200	<0.200
	mg/m3	1.4				<1.40	<1.40	<1.40
Aromatic >C5-C7	ppmv	0.05				<0.0500	<0.0500	<0.0500
Aromatic >C6-C10	mg/m3 ppmv	0.16				<0.160 <0.700	<0.160 <0.700	<0.160 <0.700
Aromatic >Co-C10	mg/m3	3				<3.00	<3.00	<3.00
Aromatic >C7-C8	ppmv	0.05				0.0580	<0.0500	<0.0500
	mg/m3	0.19				0.218	<0.190	<0.190
Aromatic >C8-C10 Aromatic >C8-C10	ppmv mg/m3	0.25				<0.250	<0.250	<0.250
Aromatic >C8-C10	mg/m3	1.25				<1.25	<1.25	<1.25
H C6-C10 Fraction (F1)	ppmv	5				<5.00	<5.00	<5.00
(,	mg/m3	20				<20.0	<20.0	<20.0
C6-C10 (F1 minus BTEX)	ppmv	5				<5.00	<5.00	<5.00
C40 C4C F	mg/m3	20 5		180	640	<20.0 <5.00	<20.0 <5.00	<20.0 <5.00
>C10-C16 Fraction (F2)	ppmv μg/m3	40,000				<5.00 <40,000	<5.00 <40,000	<5.00 <40,000
>C10-C16 Fraction (F2 minus	ppmv	5				<5.00	<5.00	<5.00
Naphthalene)	mg/m3	40		130	560	<40.0	<40.0	<40.0
Aromatic >C6-C10 minus BTEX (F1	ppmv	0.4				<0.400	<0.400	<0.400
Aromatic)	mg/m3	1.4				<1.40	<1.40	<1.40
Aromatic >C10-C16 minus Naphthalene (F2 Aromatic)	ppmv	0.15				<0.150	<0.150	<0.150
Aromatic >C10-C16 minus	рршч	0.13				40.130	40.130	40.130
Naphthalene (F2 Aromatic)	mg/m3	1.4				<1.40	<1.40	<1.40
Cs								
Vinyl bromide (bromoethene)	ppmv	0.05				<0.0500 <0.220	<0.0500 <0.220	<0.0500 <0.220
Freon 113	mg/m3 ppmv	0.22				<0.220	<0.220	<0.220
Freon 113	mg/m3	0.38				<0.380	<0.380	<0.380
vents								
1,3-Butadiene	ppmv	0.05				<0.0500	<0.0500	<0.0500
	mg/m3	0.11				<0.110	<0.110	<0.110
1,4-Dioxane	ppmv mg/m3	0.05 0.18				<0.0500 <0.180	<0.0500 <0.180	<0.0500 <0.180
Methyl Ethyl Ketone	ppmv	0.05				<0.0500	<0.0500	<0.0500
	mg/m3	0.15				<0.150	<0.150	<0.150
2-hexanone (MBK)	ppmv	0.05				<0.0500	<0.0500	<0.0500
4 Marthad 2 areata	mg/m3	0.2				<0.200	<0.200	<0.200
4-Methyl-2-pentanone	ppmv mg/m3	0.05				<0.0500 <0.200	<0.0500 <0.200	<0.0500 <0.200
Acetone	ppmv	0.05				<0.0500	<0.0500	<0.0500
	mg/m3	0.12				<0.120	<0.120	< 0.120
Allyl chloride	ppmv	0.05				<0.0500	<0.0500	<0.0500
Carbon disulfide	mg/m3 ppmv	0.16 0.05				<0.160 <0.0500	<0.160 <0.0500	<0.160 <0.0500
Carwon uisumue	mg/m3	0.05				<0.0500	<0.0500	<0.0500
Cyclohexane	ppmv	0.05				<0.0500	<0.0500	<0.0500
	mg/m3	0.17				< 0.170	< 0.170	< 0.170
Ethyl acetate	ppmv	0.05				<0.0500	<0.0500	<0.0500
Heptane	mg/m3 ppmv	0.18				<0.180 <0.0500	<0.180 <0.0500	<0.180 <0.0500
	mg/m3	0.03				<0.200	<0.200	<0.200
Hexane	ppmv	0.05				<0.0500	0.138	<0.0500
	mg/m3	0.18				<0.180	0.486	<0.180
MTBE	ppmv mg/m3	0.05 0.18				<0.0500	<0.0500 <0.180	<0.0500 <0.180
2-Propanol	mg/m3 ppmv	0.18				<0.180 <0.0500	<0.180	<0.180
·	mg/m3	0.12				<0.120	<0.120	<0.120
Tetrahydrofuran	ppmv	0.05				<0.0500	< 0.0500	<0.0500
	mg/m3	0.15				<0.150	<0.150	<0.150
	ppmv mg/m3	0.05 0.18				<0.0500 <0.180	<0.0500 <0.180	<0.0500 <0.180
		0.18				<0.180	<0.180	<0.180
Vinyl acetate	IIIg/III3					ı	1	
Vinyl acetate		0.05				< 0.0500	< 0.0500	< 0.0500
Vinyl acetate	ppmv mg/m3	0.05 0.23				<0.0500 <0.230	<0.0500 <0.230	<0.0500 <0.230
Vinyl acetate A 2,2,4-Trimethylpentane	ppmv mg/m3 ppmv	0.23 0.05				<0.230 <0.0500	<0.230 <0.0500	<0.230 <0.0500
Vinyl acetate Vinyl acetate 2,2,4-Trimethylpentane Freon 114 Propene	ppmv mg/m3	0.23				<0.230	<0.230	< 0.230

Notes:
Inches HG: Inches of mercury (refers to the height of a column of mercury measured in hundredths of inches) It is a non-SI unit of measurement for pressure
"C: Degrees Celcius
kPa: kilopascal
pmrv: parts per million by volume
mg/m3: milligrams per cubic metre

Statistics
* A Non Detect Multiplier of 1 has been applied.

Appendix G: Analytical Reports and Chain of Custody

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

CLIENT DETAILS		
Client	ADE Consulting Group	
Contact	Karin Azzam	
Samplers	Mitchell TrembatH, Andrew Carm	ichael
SAMPLE RECEIPT DETAILS		
Project Number	A101023.0722.00/004/L05	
SLS Reference	2400058	
Number of samples	11	
Date samples received	12.01.2024	
Time samples received	4:00 PM	
Samples Received By	Natalie Chambers	
Temperature upon receipt (°C)	16°C Th	ermometer Ref No. T46
Turn Around Time requested	5 Working Days	
Expected Report Date	22.01.2024	
CONDITION OF SAMPLES UPON R	ECEIVAL	
No errors in COC provided.		

N/A

Samples were delivered within holding time of analysis requested. Samples to be tested for volatiles received with zero headspace.

COMMENTS

This Report Contains:

Custody Seal intact (if used)

Sample receipt non-conformities. Summary of samples and requested analysis. Requested report deliverables.

No asbestos sample received for BR

Sample BH03 1.0-1.1 received, not on COC

All samples were received in good condition. Evidence of chilling for samples.

Appropriate use of sample containers have been used.

CONTACT US FOR ANY QUERIES

If you have any questions with respect to these samples please contact:

Krista Johnston Email sls@ade.group Contact

(+61) 0451 524 289 Phone Signed

ESA-F-02 Chain of Custody (Internal)

Date Printed: 12/01/2024

ROJECT PHASE	IUMER (E.G., : A2010	21.1725.05)		C - Chain Of Custody (In	ternal: Sydney	Lab	orat	orv	Service	s)	25.2-2-4.5-			
ROJECT PHASE				A101023.0722.00						-,			ADECDNSULTINGGROUP	
				L05								4 3 5 5		
AMPLES DELIVE	RED BY:			Andrew Carmichael			LABORA	TORY	REFERENCE	NO. (Lab use ONLY)	AIOIC	02 0	700 - 10 1	
AMPLERS:				watch carmenael							1200	23.0	722-00/2/205	
JRNAROUND (B	BUSINESS DAY - BD):		Andrew Carmichael, Ankita Saxena					RECEIVED BY:						
•	THE BOY			Standard TAT	na	SA	MPLES	11 0	HILLED:		SIGNATURE:		ta	
				12.01.2023		MI	NIMAL	HEADS	PACE :	WITHIN HOLDING	PRESERVATION	METHOD: -	CUSTODY SEAL INTACT:	
TER TEST STORA	AGE:		ROOM TEMP: □			DA	TE:	17	11/2					
			>>4 WEEKS: [FRIDGE: FREEZER: XXX		LIN	IS LOT	VO.	11/0	LIMS/EXCEL SIGN/	4:00 PM		JRE UPON RECEIPT: 16 °C T46	
PORT FORMAT:				OTHER:		Tach			SEO	LINIS/ EXCEL SIGNA	TURE:	COMMENTS		
NSULTANTS SIG	SNATURE:		HARD COPY: □ E	-MAIL: X		1	70	X	580	<	70	BH03	1.0-1.1 recid, not on C	
M.			CONSULTANTS EMAIL	: andrew.carmichael@ade.group,		_	, ,		50.000	ANALYSES REC	LURED		10 11 1600 ,1161 6111	
			mitchel.trembath@ac	de.group		1						111	NOTES	
JECT MANAGE	RS SIGNATURE:				wagest and a comment of the	1	11	- 1					Name and the same of the same	
			Karin.Azzam@ade.c	roup Digi	tally signed by Karin Azzam cn=Karin Azzam, c=AU.	-	1 1		11			1 1 1	POTENTIAL HAZARDOUS CONTAMINA	
				O™A	DE oroup susEssion	(e)	8	e e	1 1	1 1 1 1	1 1 1 1	1 1 1		
	SAMP	LE DATA		Date	il=karin.azzam@ade.group : 2024.01.12 13:58:36 +11'00'	suite)	est	ns _					- INDICOCAMBONS	
		I		CONTAINER D	ATA	P P	asp	AS					LEAD/ARSENIC NO KNOWN CONTAMINATION	
		l.				- g	55g	E E				1 1 1		
MS Sample ID	Lagrana and the second of the					SL01 (standard	OHO2 265g asbestos	Hold (PFAS)	1 1			1 1 1	OTHER:	
(Lab Use)	Sample ID (ADE)	MATRIX	SAMPLE DATE	7005 4	NO OF THE	10.	유 문	3 -	$\Gamma \Gamma \Gamma$			1 1 1	LAB PLEASE *EMAIL COC RECEIPT:	
		17	Same and the second	TYPE & PRESERVATIVE	NO. OF SAMPLE	S	0 8	2	111			1 1 1	Sample Comments	
24000					CONTAINERS	1 1					1 1 1	1 1 1		
368	C_BH01_0.2-0.3					Η	- 1	1	111		1 1 1	111	Hold tray #48	
369	C_BH01_0.5-0.6	SOIL	12.01.2024	Jar, asb bag,PFAS				1				111		
370	C_BH02_0.2-0.3	SOIL	12.01.2024	Jar, asb bag	3	X	x x							
371	C_BH02 0.3-0.4	SOIL	12.01.2024	Jar, asb bag,PFAS	2		X						steas put noted	
373	C_BH03_0.2-0.3	SOIL	12.01.2024	Jar, asb bag	3		x x						PEAS On had	
3 73	C_BH03 0.5-0.6	SOIL	12.01.2024 12.01.2024	Jar, asb bag, PFAS, 500mL bag	2		x				+++		or additional peas	
3 74	C_BH04_0.2-0.3	SOIL	12.01.2024	Jar, asb bag	3		x	X					0. 100	
375	C_BH04_0.4-0.5	SOIL	12.01.2024	Jar, asb bag, PFAS	2	_	x	+	-			-1		
	C_BH05_0.2-0.3	SOIL	12.01.2024	Jar, asb bag, PFAS	3		x x	X				+++	6 × PFAS on Hold	
378	C_BH05_0.3-0.4	SOIL	12.01.2024	Jar, asb bag, PFAS		_	x x	X	\rightarrow					
0	BR	SOIL	12.01.2024	Jar, asb bag, PFAS		_	x -	X	-					
				Glass Jar			-	1						
									++	+++			NO ASP	
									+				NO ASB recieved	
THE PARTY OF THE P											+++			
2.3						-								
						+					1 1 1 1	+		
						-	-		-					
its:					the second secon		1 1							

Container Type and Preservative: P = Unpreserved Plastic; PN = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; PNA = Sodium Hydroxide Preserved Plastic; PC = HCl preserved Plastic; VC = Vial HCl Preserved; SP = Sulfuric Preserved Plastic;

VB = Vial Sodium Bisulphate Preserved; VS = Vial Sulfuric Preserved; V = Unpreserved Vial; G = Amber Glass Unpreserved; SG = Sulfuric Preserved Amber Glass; F = Formaldehyde Preserved Glass; HS = HCI preserved Speciation bottle; Z = Zinc Acetate Preserved Bottle;

22/01/24 Page 1 of 1

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

INFORMATION SUMMARY	
SLS Reference	2400058
Project Number	A101023.0722.00/004/L05
Client	ADE Consulting Group
Contact	Karin Azzam
Samplers	Mitchell TrembatH, Andrew Carmichael
ANALYCIC UNDERWAY Detail	a of the fall auring gamples

				OF SAMPLES AND ANALYSIS REC			
			01	ОН02	PS02	HOLD PFAS	
Laboratory Sample ID	Sampling Date	Client Sample ID	SL01	ò	PS	오	
2024000368	12.01.2024	C_BH01_0.2-0.3	Х	Х	Х		
2024000369	12.01.2024	C_BH01_0.5-0.6	X	х			
2024000370	12.01.2024	C_BH02_0.2-0.3	Х	Х	Х		
2024000371	12.01.2024	C_BH02_0.3-0.4	Х	Х			
2024000372	12.01.2024	C_BH03_0.2-0.3	Х	Х		Х	
2024000373	12.01.2024	C_BH03_0.5-0.6	Х	Х			
2024000374	12.01.2024	C BH04 0.2-0.3	Х	х		Х	
2024000375	12.01.2024	C_BH04_0.4-0.5	Х	Х	Χ		
2024000376	12.01.2024	C_BH05_0.2-0.3	Х	Х		Х	
2024000377	12.01.2024	C_BH05_0.3-0.4	Х	Х		Х	
2024000378	12.01.2024	BR	Х				

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Page: 1 of 8

Batch Number: 2400058

A101023.0722.00 (368-Report Number:

378)

Accreditation No.14664

Accredited for compliance with ISO/IEC 17025 - Testing.

This certificate of analysis contains General Comments and Analytical Results. Quality Control Report and Laboratory Quality Acceptance Criteria have been issued separately.

This report supersedes any previous report(s) with this reference. This document shall not be reproduced, except in full.

This report has been electronically signed by authorised signatories below.

Authorised By

Kaiyu Li

Page: 2 of 8

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

378)

General Comments

Samples are analysed on as received basis. Sampling is not covered by NATA accreditation.

Where moisture determination has been performed, results are reported on dry weight basis.

Where the PQL of reported result differs from standard PQL, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Samples were analysed within holding time described by laboratory internal procedures if not stated otherwise. If samples delivered do not meet required analytical criteria, results will be marked with ^.

However surrogate standards are added to samples, results are not corrected for standards recoveries.

Analysis of VOC in water samples are performed on unfiltered waters (as received) spiked with surrogates and injection standards only.

Results for the analysis of metals is only for acid soluble trace metals unless indicated otherwise.

SLS is responsible for all the information in the report, except that provided by the customer.

All sampling information included in the report has been provided by customer.

Information provided by the customer can affect the validity of the results.

Address:

Certificate of Analysis

Contact: 19/01/2024 Karin Azzam **Date Reported:**

Customer: ADE Consulting Group No. of Samples: 11

> Unit 6 Date Received: 15/01/2024 7 Millennium Court

> Date of Analysis: 15/01/2024 Silverwater NSW

Cust Ref: A101023.0722.00 2 L05

*NATA accreditation does not cover the performance of this service Glossary:

> ND-not detected, NT-not tested

INS-Insufficient material to perform the test

LCS-Laboratory Control Sample **RPD-Relative Percent Difference**

N/A-Not Applicable

< less than > greater than

PQL- Practical Quantitation Limit

^Analytical result might be compromised due to sample condition or holding time requirements

Reaction rate 1 = Slight Reaction rate 2 = Moderate Reaction rate 3 = High

Reaction rate 4 = Vigorous

Ph: (02) 9648-6669

Page: 3 of 8

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

378)

19/01/2024

Page: 4 of 8

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

378)

	-	Sample ID:	2024000368	2024000369	2024000370	2024000371	2024000372	2024000373	2024000374	2024000375	2024000376	2024000377	2024000378
	Sa	ımple Name	C_BH01_0.2-0.3	C_BH01_0.5-0.6	C_BH02_0.2-0.3	C_BH02_0.3-0.4	C_BH03_0.2-0.3	C_BH03_0.5-0.6	C_BH04_0.2-0.3	C_BH04_0.4-0.5	C_BH05_0.2-0.3	С_ВН05_0.3-0.4	BR
Parameter	Units	PQL	Sample Date: 12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024
ESA-P-ORG7 & ORG8													
Benzene	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m.p Xylene	mg/kg	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
o Xylene	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Sum of BTEX	mg/kg	2	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Total Xylenes	mg/kg	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Fluorobenzene (Surr.)	%		70	73	74	76	75	76	73	78	69	70	72
C6-C10	mg/kg	35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35
C6-C10 minus BTEX	mg/kg	35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35
C6-C9	mg/kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
ESA-MP-01,ICP-01													
Arsenic	mg/kg	5	<5.0	<5.0	5.4	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Cadmium	mg/kg	0.3	0.43	0.32	0.42	<0.30	0.31	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Chromium	mg/kg	1	26.6	19.2	23.8	11.4	18.1	9.9	19.7	12.1	11.7	5.4	15.3
Copper	mg/kg	5	41.6	<5.0	17.0	5.0	41.1	<5.0	64.0	12.4	40.0	<5.0	45.3
Lead	mg/kg	5	9.7	9.0	13.9	22.8	17.7	8.3	7.8	18.6	7.4	32.3	11.8
Mercury	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Nickel	mg/kg	1	57.4	<1.0	15.9	1.8	53.0	2.4	65.8	12.2	41.2	4.2	52.9
Zinc	mg/kg	5	51.8	9.8	19.5	16.7	56.8	24.5	70.0	16.6	39.9	5.2	55.8
ESA-P-12													
% Moisture Content	%		5.9	7.5	5.8	3.4	3.9	7.9	4.6	4.1	6.6	5.3	5.6
ESA-P-ORG(12 - 15)													
Acenaphthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Acenaphthylene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30

Page: 5 of 8

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

378)

	-												
		Sample ID:	2024000368	2024000369	2024000370	2024000371	2024000372	2024000373	2024000374	2024000375	2024000376	2024000377	2024000378
		Sample Name	C_BH01_0.2-0.3	C_BH01_0.5-0.6	C_BH02_0.2-0.3	C_BH02_0.3-0.4	C_BH03_0.2-0.3	C_BH03_0.5-0.6	C_BH04_0.2-0.3	C_BH04_0.4-0.5	C_BH05_0.2-0.3	C_BH05_0.3-0.4	BR
Parameter	Units	PQL	Sample Date: 12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024
Anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[a]anthracene	mg/kg	0.3	0.51	0.52	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	0.35	<0.30	<0.30
Benzo[a]pyrene	mg/kg	0.3	0.96	<0.30	<0.30	0.32	<0.30	<0.30	<0.30	<0.30	0.50	<0.30	<0.30
Benzo[g,h,i]perylene	mg/kg	0.3	0.64	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[b,k]fluoranthene	mg/kg	0.3	0.95	0.71	<0.30	0.31	<0.30	<0.30	<0.30	<0.30	0.44	<0.30	<0.30
Chrysene	mg/kg	0.3	0.88	1.02	<0.30	0.31	<0.30	<0.30	<0.30	<0.30	0.50	<0.30	<0.30
Dibenzo[a,h]anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Fluoranthene	mg/kg	0.3	0.84	0.99	<0.30	0.47	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Fluorene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Indeno(1,2,3-cd)pyrene	mg/kg	0.3	0.34	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Naphthalene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Phenanthrene	mg/kg	0.3	<0.30	0.44	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Pyrene	mg/kg	0.3	1.08	1.30	<0.30	0.48	<0.30	<0.30	<0.30	<0.30	0.32	<0.30	<0.30
Sum of Positive PAHs	mg/kg	0.3	6.20	4.98	<0.30	1.89	<0.30	<0.30	<0.30	<0.30	2.11	<0.30	<0.30
Benzo(a)pyrene TEQ (Zero)	mg/kg	0.3	1.16	<0.30	<0.30	0.35	<0.30	<0.30	<0.30	<0.30	0.58	<0.30	<0.30
Benzo(a)pyrene TEQ (Half PQL)	mg/kg	0.3	1.31	0.45	0.35	0.54	0.35	0.35	0.35	0.35	0.75	0.35	0.35
Benzo(a)pyrene TEQ (PQL)	mg/kg	0.3	1.46	0.77	0.70	0.72	0.70	0.70	0.70	0.70	0.92	0.70	0.70
p-Terphenyl-d14 (Surr.)	%		107	88	121	127	123	124	120	121	120	115	120
aldrin	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
a-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
b-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
d-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
g-BHC (lindane)	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
cis-chlordane	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
trans-chlordane	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4'-DDD	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

Page: 6 of 8

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

378)

		Sample ID:	2024000368	2024000369	2024000370	2024000371	2024000372	2024000373	2024000374	2024000375	2024000376	2024000377	2024000378
	Si	ample Name	C_BH01_0.2-0.3	С_ВН01_0.5-0.6	C_BH02_0.2-0.3	C_BH02_0.3-0.4	C_BH03_0.2-0.3	С_ВН03_0.5-0.6	C_BH04_0.2-0.3	С_ВН04_0.4-0.5	C_BH05_0.2-0.3	С_ВН05_0.3-0.4	BR
Parameter	Units	PQL	Sample Date: 12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024
4,4'-DDE	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4'-DDT	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
dieldrin	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endosulfan I	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endosulfan II	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endosulfan sulfate	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endrin	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endrin aldehyde	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endrin ketone	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
heptachlor	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
heptachlor epoxide	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
hexachlorobenzene	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
methoxychlor	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TCMX (Surr.)	%		130	115	125	131	130	134	133	134	136	133	135
chlorpyrifos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
chlorpyrifos methyl	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
diazinon	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
fenchlorphos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
methyl parathion	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
prophos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
tributylphosphorotrithioite	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Aroclor 1016	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1221	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1232	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1242	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1248	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

Page: 7 of 8

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

378)

		Sample ID:	2024000368	2024000369	2024000370	2024000371	2024000372	2024000373	2024000374	2024000375	2024000376	2024000377	2024000378
	s	ample Name	C_BH01_0.2-0.3	C_BH01_0.5-0.6	C_BH02_0.2-0.3	C_BH02_0.3-0.4	C_BH03_0.2-0.3	C_BH03_0.5-0.6	C_BH04_0.2-0.3	C_BH04_0.4-0.5	C_BH05_0.2-0.3	C_BH05_0.3-0.4	BR
Parameter	Units	PQL	Sample Date: 12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024
Aroclor 1254	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1260	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
2-fluorobiphenyl (Surr.)	%		125	97	132	134	134	138	138	135	137	132	138
ESA-P-ORG16													
PFBA	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFPeA	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFBS	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFHxA	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFPeS	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFHpA	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFOA	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFHpS	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFOS	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFDA	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFUdA	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFDoA	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFTrDA	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFTeDA	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFNA	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
PFHxS	ug/kg	5	<5	-	<5	-	-	-	-	<5	-	-	-
MPFBA (Surr.)	%		111	-	113	-	-	-	-	89	-	-	-
M3PFBS (Surr.)	%		106	-	98	-	-	-	-	96	-	-	-
MPFOS (Surr.)	%		100	-	106	-	-	-	-	128	-	-	-
MPFHxA (Surr.)	%		102	-	86	-	-	-	-	90	-	-	-
MPFOA (Surr.)	%		82	-	83	-	-	-	-	94	-	-	-
MPFUdA (Surr.)	%		89	-	100	-	-	-	-	105	-	-	-

Page: 8 of 8

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

378)

		Sample ID:	2024000368	2024000369	2024000370	2024000371	2024000372	2024000373	2024000374	2024000375	2024000376	2024000377	2024000378
		Sample Name	C_BH01_0.2-0.3	C_BH01_0.5-0.6	C_BH02_0.2-0.3	C_BH02_0.3-0.4	C_BH03_0.2-0.3	С_ВН03_0.5-0.6	C_BH04_0.2-0.3	C_BH04_0.4-0.5	C_BH05_0.2-0.3	C_BH05_0.3-0.4	BR
Parameter	Units	PQL	Sample Date: 12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024	12/01/2024
ESA-P-ORG(3,8)													
>C10-C16	mg/kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
>C16-C34	mg/kg	100	113	<100	<100	<100	<100	<100	<100	<100	<100	<100	139
>C34-C40	mg/kg	100	151	<100	<100	<100	175	<100	159	111	<100	<100	225
>C10-C40 (Sum of total)	mg/kg	100	264	<100	<100	<100	175	<100	159	111	<100	<100	364
>C10-C14	mg/kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
>C15-C28	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
>C29-C36	mg/kg	100	173	<100	103	<100	162	<100	147	122	<100	<100	239
>C10-C36 (Sum of total)	mg/kg	100	173	<100	103	<100	162	<100	147	122	<100	<100	239

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669 A.B.N. 52 093 452 950

Analysis report: A101023.0722.00

Laboratory LOT NO: 2400058

 Date Received:
 12.01.2024

 Date Analysed:
 16.01.2024

 Report Date:
 16.01.2024

Client: ADE Consulting Group

Analytical method: ABI-P-01: Procedure for the Analysis and ID of Bulk Samples for Asbestos

Analysis performed by:

Results Authorised By:

Grace (Weichen) Jia
Approved asbestos identifier

Grace (Weichen) Jia
Approved Signatory

This report supersedes all previous reports with the same reference. This report shall not be reproduced except in full

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025 - Testing.

Tests not covered by NATA are denoted with *.

General Comments:

Sydney Laboratory Services is responsible for all the information in the report, except that provided by the customer. All sampling information included in the report has been provided by the client.

Sample analysed as received.

Samples are stored for minimum period of 4 weeks, if longer time is not advised by client. All positive/negative results have been confirmed by polarized light microscopy including dispersion staining. ABI-P-01: Qualitative Identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques as per AS4964.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025 - Testing.

Tests not covered by NATA are denoted with *.

Client Sample ID.	Laboratory Sample No.	Sample Description/Matrix	Sample Dry Weight (g)	Trace Analysis (> 5 Fibres)	Asbestos ID in Soil (AS4964) >0.1g/kg	Weight Total ACM (g)	Comments
C_BH01_0.2-0.3	2024000368	Granulated dark soil with rocks	168.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic fibres detected		
C_BH01_0.5-0.6	2024000369	Granulated dark soil with rocks	156.00	No asbestos detected at the reporting limit of 0.1g/kg		N/A	Nil
					Organic fibres detected		
C_BH02_0.2-0.3	2024000370	Granulated dark soil with rocks	99.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic fibres detected		
C_BH02_0.3-0.4	2024000371	Granulated dark soil with rocks	146.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic fibres detected		
C_BH03_0.2-0.3	2024000372	Granulated dark soil with rocks	115.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic fibres detected		

Client Sample ID.	Laboratory Sample No.	Sample Description/Matrix	Sample Dry Weight (g)	Trace Analysis (> 5 Fibres)	Asbestos ID in Soil (AS4964) >0.1g/kg	Weight Total ACM (g)	Comments
C_BH03_0.5-0.6	2024000373	Granulated dark soil with rocks	110.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic fibres detected		
C_BH04_0.2-0.3	2024000374	Granulated dark soil with rocks	133.00	No asbestos detected at the reporting limit of 0.1g/kg ND Organic fibres detected		N/A	Nil
C_BH04_0.4-0.5	2024000375	Granulated dark soil with rocks	128.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic fibres detected		
С_ВН05_0.2-0.3	2024000376	Granulated dark soil with rocks	86.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic fibres detected		
С_ВН05_0.3-0.4	2024000377	Granulated light soil with rocks	104.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic fibres detected		

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669 **Page:** 1 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

378)

Accreditation No.14664

Accredited for compliance with ISO/IEC 17025 - Testing.

This Quality Control Report contains results of QAQC samples analysis and the Laboratory Acceptance Criteria.

This report supersedes any previous report(s) with this reference. This document shall not be reproduced, except in full.

This report has been electronically signed by authorised signatories below.

Authorised By

Kaiyu Li

19/01/2024

Page: 2 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

378)

General Comments

Duplicate samples and matrix spike may not be prepared on smaller jobs, however are analysed at frequency. QAQC samples shown within the report as e.g. Batch Blank, Batch Matrix Spike were performed on samples not reported on that Certificate of Analysis.

Blank This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in the same manner as for samples.

Duplicate This is the interlaboratory split of a random sample from the processed batch

Matrix Spike A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. Surr. (Surrogate Spike) Surrogates are known additions to each sample, blank and matrix spike or LCS in a batch. Surrogates are chosen as a compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Blank shall be < PQL

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics/PFAS is acceptable. Matrix heterogeneity may result in matrix spike analyses falling outside these limits RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the PQL: No Limit

Results between 10-20 times the PQL: RPD must lie between 0-50%

Results >20 times the PQL : RPD must lie between 0-30% **Surrogate Recoveries :** Recoveries must lie between 50-150%

SLS is responsible for all the information in the report, except that provided by the customer.

All sampling information included in the report has been provided by customer.

Information provided by the customer can affect the validity of the results.

Address:

Quality Control Report

Contact: Karin Azzam Date Reported: 19/01/2024

Customer: ADE Consulting Group **No. of Samples:** 24

Unit 6 **Date Received:** 15/01/2024 7 Millennium Court

Silverwater NSW Date of Analysis: 15/01/2024

Cust Ref: A101023.0722.00 2 L05

Glossary: *NATA accreditation does not cover the performance of this service

ND-not detected, NT-not tested

INS-Insufficient material to perform the test

LCS-Laboratory Control Sample RPD-Relative Percent Difference

N/A-Not Applicable

< less than

> greater than

PQL- Practical Quantitation Limit

^Analytical result might be compromised due to sample condition or holding time requirements

Reaction rate 1 = Slight Reaction rate 2 = Moderate Reaction rate 3 = High Reaction rate 4 = Vigorous **Page:** 3 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

Quality Control Report

Sample ID: D202400036901 D202400037801

Sample Name C_BH01_0.5-0.6

Parameter	Units	PQL		
ESA-P-ORG7 & ORG8				
Benzene			Pass	Pass
Toluene			Pass	Pass
Ethylbenzene			Pass	Pass
m.p Xylene			Pass	Pass
o Xylene			Pass	Pass
Fluorobenzene (Surr.)	%		74	73
C6-C10			Pass	Pass
C6-C9			Pass	Pass

Sample ID: D202400036902 D202400037802

Sample Name C_BH01_0.5-0.6

Parameter	Units	PQL		
ESA-P-ORG(12 - 15)				
Acenaphthene			Pass	Pass
Acenaphthylene			Pass	Pass
Anthracene			Pass	Pass
Benzo[a]anthracene			Pass	Pass
Benzo[a]pyrene			Pass	Pass
Benzo[g,h,i]perylene			Pass	Pass
Benzo[b,k]fluoranthene			Pass	Pass
Chrysene			Pass	Pass
Dibenzo[a,h]anthracene			Pass	Pass
Fluoranthene			Pass	Pass
Fluorene			Pass	Pass
Indeno(1,2,3-cd)pyrene			Pass	Pass

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

Naphthalene		Pass	Pass
Phenanthrene		Pass	Pass
Pyrene		Pass	Pass
p-Terphenyl-d14 (Surr.)	%	122	117
aldrin		Pass	Pass
а-ВНС		Pass	Pass
b-BHC		Pass	Pass
d-BHC		Pass	Pass
g-BHC (lindane)		Pass	Pass
cis-chlordane		Pass	Pass
trans-chlordane		Pass	Pass
4,4'-DDD		Pass	Pass
4,4'-DDE		Pass	Pass
4,4'-DDT		Pass	Pass
dieldrin		Pass	Pass
endosulfan I		Pass	Pass
endosulfan II		Pass	Pass
endosulfan sulfate		Pass	Pass
endrin		Pass	Pass
endrin aldehyde		Pass	Pass
endrin ketone		Pass	Pass
heptachlor		Pass	Pass
heptachlor epoxide		Pass	Pass
hexachlorobenzene		Pass	Pass
methoxychlor		Pass	Pass
TCMX (Surr.)	%	133	131
chlorpyrifos		Pass	Pass
chlorpyrifos methyl		Pass	Pass
diazinon		Pass	Pass
fenchlorphos		Pass	Pass
methyl parathion		Pass	Pass

Page: 5 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

prophos		Pass	Pass
tributylphosphorotrithioite		Pass	Pass
Aroclor 1016		Pass	Pass
Aroclor 1221		Pass	Pass
Aroclor 1232		Pass	Pass
Aroclor 1242		Pass	Pass
Aroclor 1248		Pass	Pass
Aroclor 1254		Pass	Pass
Aroclor 1260		Pass	Pass
2-fluorobiphenyl (Surr.)	%	136	132

Sample ID: D202400036903 D202400037803

Sample Name C_BH01_0.5-0.6

Parameter	Units	PQL		
ESA-P-ORG(3,8)				
>C10-C16			Pass	Pass
>C16-C34			Pass	Pass
>C34-C40			Pass	Pass
>C10-C14			Pass	Pass
>C15-C28			Pass	Pass
>C29-C36			Pass	Pass

Page: 6 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

Sample ID: D202400036904 D202400037804

Sample Name C_BH01_0.5-0.6

Parameter	Units	PQL		
ESA-MP-01,ICP-01				
Arsenic			Pass	Pass
Cadmium			Pass	Pass
Chromium			Pass	Pass
Copper			Pass	Pass
Lead			Pass	Pass
Mercury			Pass	Pass
Nickel			Pass	Pass
Zinc			Pass	Pass

Page: 7 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

Sample Name C_BH02_0.2-0.3

	Sa	mple Name	C_BH02_0.2-0.3
Parameter	Units	PQL	
ESA-P-ORG16			
PFBA			Pass
PFPeA			Pass
PFBS			Pass
PFHxA			Pass
PFPeS			Pass
PFHpA			Pass
PFOA			Pass
PFHpS			Pass
PFOS			Pass
PFDA			Pass
PFUdA			Pass
PFDoA			Pass
PFTrDA			Pass
PFTeDA			Pass
PFNA			Pass
PFHxS			Pass
MPFBA	%		87
M3PFBS	%		115
MPFOS	%		102
MPFHxA	%		78
MPFOA	%		81
MPFUdA	%		93

Page: 8 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

Sample Name

Parameter	Units	PQL	BTEX Blank - Soil		
ESA-P-ORG7 & ORG8					
Benzene	mg/kg	0.5	<0.50		
Toluene	mg/kg	0.5	<0.50		
Ethylbenzene	mg/kg	1	<1.0		
m.p Xylene	mg/kg	2	<2.0		
o Xylene	mg/kg	1	<1.0		
C6-C10	mg/kg	35	<35		
C6-C9	mg/kg	25	<25		

Sample ID: Q2024000089

Sample Name

Units	PQL	BTEX Blank Sp-Soil		
%		74		
%		80		
%		81		
%		83		
%		81		
%		74		
	% % % %	% % % %		

Sample ID: Q2024000090

Sample Name

Parameter	Units	PQL	PCB Blank - Soil
ESA-P-ORG(12 - 15)			
Acenaphthene	mg/kg	0.3	<0.30
Acenaphthylene	mg/kg	0.3	<0.30
Anthracene	mg/kg	0.3	<0.30
Benzo[a]anthracene	mg/kg	0.3	<0.30

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court Silverwater 2128 Ph: (02) 9648-6669 **Page:** 9 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

3			
Benzo[a]pyrene	mg/kg	0.3	<0.30
Benzo[g,h,i]perylene	mg/kg	0.3	<0.30
Benzo[b,k]fluoranthene	mg/kg	0.3	<0.30
Chrysene	mg/kg	0.3	<0.30
Dibenzo[a,h]anthracene	mg/kg	0.3	<0.30
Fluoranthene	mg/kg	0.3	<0.30
Fluorene	mg/kg	0.3	<0.30
Indeno(1,2,3-cd)pyrene	mg/kg	0.3	<0.30
Naphthalene	mg/kg	0.3	<0.30
Phenanthrene	mg/kg	0.3	<0.30
Pyrene	mg/kg	0.3	<0.30
aldrin	mg/kg	0.1	<0.10
а-ВНС	mg/kg	0.1	<0.10
b-BHC	mg/kg	0.1	<0.10
d-BHC	mg/kg	0.1	<0.10
g-BHC (lindane)	mg/kg	0.1	<0.10
cis-chlordane	mg/kg	0.1	<0.10
trans-chlordane	mg/kg	0.1	<0.10
4,4'-DDD	mg/kg	0.1	<0.10
4,4'-DDE	mg/kg	0.1	<0.10
4,4'-DDT	mg/kg	0.1	<0.10
dieldrin	mg/kg	0.1	<0.10
endosulfan I	mg/kg	0.2	<0.20
endosulfan II	mg/kg	0.2	<0.20
endosulfan sulfate	mg/kg	0.1	<0.10
endrin	mg/kg	0.2	<0.20
endrin aldehyde	mg/kg	0.1	<0.10
endrin ketone	mg/kg	0.1	<0.10
heptachlor	mg/kg	0.1	<0.10
heptachlor epoxide	mg/kg	0.1	<0.10
hexachlorobenzene	mg/kg	0.1	<0.10

Page: 10 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

methoxychlor	mg/kg	0.1	<0.10
chlorpyrifos	mg/kg	0.1	<0.10
chlorpyrifos methyl	mg/kg	0.1	<0.10
diazinon	mg/kg	0.1	<0.10
fenchlorphos	mg/kg	0.1	<0.10
methyl parathion	mg/kg	0.1	<0.10
prophos	mg/kg	0.1	<0.10
tributylphosphorotrithioite	mg/kg	0.1	<0.10
Aroclor 1016	mg/kg	0.5	<0.50
Aroclor 1221	mg/kg	0.5	<0.50
Aroclor 1232	mg/kg	0.5	<0.50
Aroclor 1242	mg/kg	0.5	<0.50
Aroclor 1248	mg/kg	0.5	<0.50
Aroclor 1254	mg/kg	0.5	<0.50
Aroclor 1260	mg/kg	0.5	<0.50

Page: 11 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

Sample Name

Sample Name			
Parameter	Units	PQL	PCB Blank Sp - Soil
ESA-P-ORG(12 - 15)			
Acenaphthene	%		117
Anthracene	%		99
Fluoranthene	%		140
Naphthalene	%		138
Phenanthrene	%		132
Pyrene	%		118
p-Terphenyl-d14 (Surr.)	%		117
aldrin	%		138
endrin	%		83
hexachlorobenzene	%		105
TCMX (Surr.)	%		131
chlorpyrifos	%		102
diazinon	%		122
2-fluorobiphenyl (Surr.)	%		131
Aroclor 1016	%		128

Sample ID: Q2024000092

Sample Name

Parameter	Units	PQL	TRH Blank-Soil
ESA-P-ORG(3,8)			
>C10-C16	mg/kg	50	<50
>C16-C34	mg/kg	100	<100
>C34-C40	mg/kg	100	<100
>C10-C14	mg/kg	50	<50
>C15-C28	mg/kg	100	<100
>C29-C36	mg/kg	100	<100

Page: 12 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

Sample Name

Parameter	Units	PQL	TRH Blank Spike- Soil
ESA-P-ORG(3,8)			
>C10-C16	%		107
>C10-C14	%		106

Page: 13 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

378)

19/01/2024

Sample Name

	Затріе мате			
Parameter	Units	PQL	PFAS Blank - Soil	
ESA-P-ORG16				
PFBA	ug/kg	5	<5	
PFPeA	ug/kg	5	<5	
PFBS	ug/kg	5	<5	
PFHxA	ug/kg	5	<5	
PFPeS	ug/kg	5	<5	
PFHpA	ug/kg	5	<5	
PFOA	ug/kg	5	<5	
PFHpS	ug/kg	5	<5	
PFOS	ug/kg	5	<5	
PFDA	ug/kg	5	<5	
PFUdA	ug/kg	5	<5	
PFDoA	ug/kg	5	<5	
PFTrDA	ug/kg	5	<5	
PFTeDA	ug/kg	5	<5	
PFNA	ug/kg	5	<5	
PFHxS	ug/kg	5	<5	
MPFBA (Surr.)	%		76	
M3PFBS (Surr.)	%		91	
MPFOS (Surr.)	%		109	
MPFHxA (Surr.)	%		85	
MPFOA (Surr.)	%		121	
MPFUdA (Surr.)	%		98	

Page: 14 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

Sample Name

Sample Name			
Parameter	Units	PQL	PFAS Blank Sp - Soil
ESA-P-ORG16			
PFBA	%		94
PFPeA	%		94
PFBS	%		90
PFHxA	%		90
PFPeS	%		96
PFHpA	%		89
PFOA	%		103
PFHpS	%		128
PFOS	%		87
PFDA	%		80
PFUdA	%		93
PFDoA	%		80
PFTrDA	%		111
PFTeDA	%		94
PFNA	%		129
PFHxS	%		111
MPFBA (Surr.)	%		71
M3PFBS (Surr.)	%		74
MPFOS (Surr.)	%		101
MPFHxA (Surr.)	%		82
MPFOA (Surr.)	%		101
MPFUdA (Surr.)	%		121

Page: 15 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

Sample Name

Sumple number			
Parameter	Units	PQL	Metals Blank - Soil
ESA-MP-01,ICP-01			
Arsenic	mg/kg	5	<5.0
Cadmium	mg/kg	0.3	<0.30
Chromium	mg/kg	1	<1.0
Copper	mg/kg	5	<5.0
Lead	mg/kg	5	<5.0
Mercury	mg/kg	0.1	<0.10
Nickel	mg/kg	1	<1.0
Zinc	mg/kg	5	<5.0

Sample ID: Q2024000097

Sample Name

Parameter	Units	PQL	Metals Blank Sp- Soil
ESA-MP-01,ICP-01			
Arsenic	%		100
Cadmium	%		97
Chromium	%		101
Copper	%		100
Lead	%		101
Mercury	%		105
Nickel	%		102
Zinc	%		105

Page: 16 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

Sample Name C BH01 0.2-0.3

			0_51161_612 616
Parameter	Units	PQL	
ESA-P-ORG-07 & 08			
Benzene	%		71
Toluene	%		76
Ethylbenzene	%		78
m.p Xylene	%		81
o Xylene	%		78
Fluorobenzene (Surr.)	%		69

Sample ID: \$202400036802

Sample Name C_BH01_0.2-0.3

Parameter	Units	PQL	
ESA-P-ORG(12 - 15)			
Acenaphthene	%		123
Anthracene	%		134
Fluoranthene	%		101
Naphthalene	%		124
Phenanthrene	%		196
Pyrene	%		170
p-Terphenyl-d14 (Surr.)	%		110
aldrin	%		138
endrin	%		90
hexachlorobenzene	%		115
TCMX (Surr.)	%		134
chlorpyrifos	%		138
diazinon	%		125
Aroclor 1016	%		119
2-fluorobiphenyl (Surr.)	%		130

Page: 17 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

Sample Name C_BH01_0.2-0.3

Parameter	Units	PQL	
ESA-P-ORG(3,8)			
>C10-C16	%		97
>C10-C14	%		97

Page: 18 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

Sample Name C BH01 0.2-0.3

	Sa	mple Name	C_BH01_0.2-0.3
Parameter	Units	PQL	
ESA-P-ORG16			
PFBA	%		93
PFPeA	%		88
PFBS	%		90
PFHxA	%		93
PFPeS	%		97
PFHpA	%		93
PFOA	%		113
PFHpS	%		128
PFOS	%		80
PFDA	%		95
PFUdA	%		101
PFDoA	%		125
PFTrDA	%		122
PFTeDA	%		81
PFNA	%		123
PFHxS	%		99
MPFBA (Surr.)	%		87
M3PFBS (Surr.)	%		101
MPFOS (Surr.)	%		105
MPFHxA (Surr.)	%		86
MPFOA (Surr.)	%		87
MPFUdA (Surr.)	%		123

Page: 19 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

Sample Name C_BH01_0.2-0.3

Parameter	Units	PQL	
ESA-MP-01,ICP-01			
Arsenic	%		97
Cadmium	%		100
Chromium	%		88
Copper	%		109
Lead	%		100
Mercury	%		101
Nickel	%		84
Zinc	%		95

Page: 20 of 20

Batch Number: 2400058

Report Number: A101023.0722.00 (368-

ENVIROLAB	ENV <u>IRO</u> URB	CHA	AIN OF	CUSTODY	FOR	M	- Cli	ent				_			Natio Sydn	onal pho iev Lab	one nu - Envi	imber irolab	1300 4 Service	UP ENVIROLAB GROUP 24 344 National phone number 1300 424 344
[Copyright and Confid	antiell																			/ 2067 rvlrolab.com.au
					Iau					_					Perti	<u>1 Lab</u> - F 3 Hayde 9317 2	MPL L: in Crt.	abora Myare	tories e. WA	6154
Cilent: ADE Consul				 	Citent Projec	t Name	/Number/Si	te etc (ie report	nne):						© 08	9317 2	505 È	⊒ ľab@	gmpl.c	om.au
Contact Person: Karin.					PO No.:A101	1023.073	22 002								Melb	ourne L	<u>ab</u> - E	nvirol	ab Sen	vices outh, VIC 3136
Sampler: AC	агганіш а ав. ді очр				Envirolab Qu										Ø 03	9763 2	500 (E	, croy ⊴ mel	oon sc	@envirolab.com.au
	ium Court Silverwater NSW 212	в —		<u> </u>	Date results				_						Adel	eide Off	fice - E	inviro	lab Ser	vices
1	l@ade.group, karin.azzam@ade				Or choose:	standar	ď								7a Ti	10 Para	de, No	nwood	I, SA 50	vices 067 envirolab.com.au
	nlanca am	ail these pec	unia ton		Note: Inform	lab in ac	ivance if urg	ent turnaround i	s requir	ed - sur	charge	s apply								
Phone:	n/a		0490 072 877		Additional re	nort for	mat: esda	at /							20a,	oane Of 10-20 D	epot S	it Bar	yo, QL	.D 4014
Email;	andrew.carmichael@ade.c			oup	Lab Commer	_									D 07	3266 9	532 [⊡ bris	bane@	envirolab.com.au
															Unit	in Offic 20/119 I 8967 12	Reicha	ardt Re	oad. W	ices Rinnellie, NT 0820 Ivirolab.com.au
	Sam	ple informat	on							Tests F	Require	ď								Comments
Envirolab Sample ID	Client Sample ID or Information	Depth	Date sampled	Type of sample	6	700	CEC	Ħ	<u>a</u>	Combination 6			:	!	•					Provide as much information about the sample as you can
1	SR		12/01/2024	soil		†				×		Н								
2	5 C_BH0 ≱ _0.3-0.4		12/01/2024	<u>soil</u>	x	×	x	×	×											
								_	l											
						<u> </u>												L.,		
						<u> </u>														
											<u> </u>							<u></u>		
<u></u>						1														<u> </u>
						<u> </u>		<u> </u>		<u> </u>										
																$-\downarrow$				
					<u> </u>	1		_												
					<u> </u>				ļ											
																				<u> </u>
			_							<u> </u>		$oxed{oxed}$]					
				<u> </u>																

L_n			
Relinquished by (Company):	ADE Consulting Group	Received by (Company): ELS SYI)	Lab Use Only
Print Name:	Andrew Carmichael	Print Name: JENNA	Job number: 341485 Cooling: Ice pice pack/None
Date & Time:	28.09.2023	Date & Time: 12/1/24, 1630	Temperature: 3t Security seal: [flacty Broken / None
Signature:		Signature	TAT Req - SAME day / 1 / 2 / 3 / 4 / STD

customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 341485

Client Details	
Client	ADE CONSULTING GROUP PTY LTD
Attention	Karin Azzam
Address	Unit 6, 7 Millenium Court, Silverwater, NSW, 2128

Sample Details	
Your Reference	A101023.0722.002
Number of Samples	2 Soil
Date samples received	12/01/2024
Date completed instructions received	12/01/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	19/01/2024	
Date of Issue	18/01/2024	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Clara Fong, Chemist (FAS)
Loren Bardwell, Development Chemist
Steven Luong, Senior Chemist
Tim Toll, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		341485-1
Your Reference	UNITS	SR
Date Sampled		12/01/2024
Type of sample		Soil
Date extracted	-	15/01/2024
Date analysed	-	16/01/2024
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	92

svTRH (C10-C40) in Soil		
Our Reference		341485-1
Your Reference	UNITS	SR
Date Sampled		12/01/2024
Type of sample		Soil
Date extracted	-	15/01/2024
Date analysed	-	16/01/2024
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	280
Total +ve TRH (C10-C36)	mg/kg	280
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	200
TRH >C ₃₄ -C ₄₀	mg/kg	420
Total +ve TRH (>C10-C40)	mg/kg	620
Surrogate o-Terphenyl	%	90

PAHs in Soil		
Our Reference		341485-1
Your Reference	UNITS	SR
Date Sampled		12/01/2024
Type of sample		Soil
Date extracted	-	15/01/2024
Date analysed	-	16/01/2024
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	101

Envirolab Reference: 341485

Organochlorine Pesticides in soil		
Our Reference		341485-1
Your Reference	UNITS	SR
Date Sampled		12/01/2024
Type of sample		Soil
Date extracted	-	15/01/2024
Date analysed	-	16/01/2024
alpha-BHC	mg/kg	<0.1
нсв	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Mirex	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate 4-Chloro-3-NBTF	%	97

Organophosphorus Pesticides in Soil		
Our Reference		341485-1
Your Reference	UNITS	SR
Date Sampled		12/01/2024
Type of sample		Soil
Date extracted	-	15/01/2024
Date analysed	-	16/01/2024
Dichlorvos	mg/kg	<0.1
Mevinphos	mg/kg	<0.1
Phorate	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Disulfoton	mg/kg	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1
Parathion-Methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Fenthion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Methidathion	mg/kg	<0.1
Fenamiphos	mg/kg	<0.1
Ethion	mg/kg	<0.1
Phosalone	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Coumaphos	mg/kg	<0.1
Surrogate 4-Chloro-3-NBTF	%	97

PCBs in Soil		
Our Reference		341485-1
Your Reference	UNITS	SR
Date Sampled		12/01/2024
Type of sample		Soil
Date extracted	-	15/01/2024
Date analysed	-	16/01/2024
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate 2-Fluorobiphenyl	%	99

Acid Extractable metals in soil			
Our Reference		341485-1	341485-2
Your Reference	UNITS	SR	C_BH05_0.3-0.4
Date Sampled		12/01/2024	12/01/2024
Type of sample		Soil	Soil
Date prepared	-	15/01/2024	15/01/2024
Date analysed	-	16/01/2024	16/01/2024
Arsenic	mg/kg	<4	[NA]
Cadmium	mg/kg	<0.4	[NA]
Chromium	mg/kg	11	[NA]
Copper	mg/kg	56	[NA]
Lead	mg/kg	11	[NA]
Mercury	mg/kg	<0.1	[NA]
Nickel	mg/kg	42	[NA]
Zinc	mg/kg	33	[NA]
Iron	mg/kg	[NA]	3,300

Moisture			
Our Reference		341485-1	341485-2
Your Reference	UNITS	SR	C_BH05_0.3-0.4
Date Sampled		12/01/2024	12/01/2024
Type of sample		Soil	Soil
Date prepared	-	15/01/2024	15/01/2024
Date analysed	-	16/01/2024	16/01/2024
Moisture	%	4.9	5.8

Misc Inorg - Soil			
Our Reference		341485-2	
Your Reference	UNITS	C_BH05_0.3-0.4	
Date Sampled		12/01/2024	
Type of sample		Soil	
Date prepared	-	15/01/2024	
Date analysed	-	15/01/2024	
pH 1:5 soil:water	pH Units	5.8	
Electrical Conductivity 1:5 soil:water	μS/cm	26	
Total Organic Carbon in soil/solids	mg/kg	1,300	

CEC		
Our Reference		341485-2
Your Reference	UNITS	C_BH05_0.3-0.4
Date Sampled		12/01/2024
Type of sample		Soil
Date prepared	-	17/01/2024
Date analysed	-	17/01/2024
Exchangeable Ca	meq/100g	1.7
Exchangeable K	meq/100g	0.1
Exchangeable Mg	meq/100g	1.3
Exchangeable Na	meq/100g	<0.1
Cation Exchange Capacity	meq/100g	3.1

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
INORG-137	Total Carbon Nitrogen Sulfur by high temperature catalytic combustion with IR detection.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Envirolab Reference: 341485

Revision No: R00

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql 'eq="" 2.="" 3.="" <pql="" a="" above.<="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" is="" least="" may="" mid-point="" more="" most="" negative="" not="" pahs="" positive="" pql'values="" pql.="" present="" present.="" reported="" stipulated="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero'values="" zero.=""></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	341485-1	
Date extracted	-			15/01/2024	[NT]		[NT]	[NT]	15/01/2024	15/01/2024	
Date analysed	-			16/01/2024	[NT]		[NT]	[NT]	16/01/2024	16/01/2024	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	103	89	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	103	89	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	97	86	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	103	86	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	103	90	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	105	91	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	106	93	
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	84	[NT]		[NT]	[NT]	96	80	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	341485-1
Date extracted	-			15/01/2024	[NT]		[NT]	[NT]	15/01/2024	15/01/2024
Date analysed	-			15/01/2024	[NT]		[NT]	[NT]	16/01/2024	16/01/2024
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	126	134
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	126	#
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	129	#
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	126	134
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	126	#
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	129	#
Surrogate o-Terphenyl	%		Org-020	86	[NT]		[NT]	[NT]	109	#

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	341485-1	
Date extracted	-			15/01/2024	1	15/01/2024	15/01/2024		15/01/2024	15/01/2024	
Date analysed	-			16/01/2024	1	16/01/2024	16/01/2024		16/01/2024	16/01/2024	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	125	129	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	122	124	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	128	130	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110	108	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	106	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	107	107	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	126	124	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	122	125	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	96	1	101	98	3	89	92	

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	341485-1	
Date extracted	-			15/01/2024	1	15/01/2024	15/01/2024		15/01/2024	15/01/2024	
Date analysed	-			16/01/2024	1	16/01/2024	16/01/2024		16/01/2024	16/01/2024	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	122	124	
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	123	119	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	92	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	85	90	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	97	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	113	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	139	137	
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	114	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	106	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	118	127	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Mirex	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	95	1	97	95	2	97	102	

QUALITY CONTI	ROL: Organopl	nosphorus	s Pesticides in Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	341485-1
Date extracted	-			15/01/2024	1	15/01/2024	15/01/2024		15/01/2024	15/01/2024
Date analysed	-			16/01/2024	1	16/01/2024	16/01/2024		16/01/2024	16/01/2024
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	127	134
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	107
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	108
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	123
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	107	113
Fenthion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	123
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	119
Phosalone	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	95	1	97	95	2	97	102

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	341485-1	
Date extracted	-			15/01/2024	1	15/01/2024	15/01/2024		15/01/2024	15/01/2024	
Date analysed	-			16/01/2024	1	16/01/2024	16/01/2024		16/01/2024	16/01/2024	
Aroclor 1016	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	94	82	
Aroclor 1260	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	97	1	99	96	3	98	103	

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	341485-1
Date prepared	-			15/01/2024	[NT]		[NT]	[NT]	15/01/2024	15/01/2024
Date analysed	-			16/01/2024	[NT]		[NT]	[NT]	16/01/2024	16/01/2024
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	107	95
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	103	90
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	108	96
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	106
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	108	93
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	115	127
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	103	95
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	93
Iron	mg/kg	10	Metals-020	<10	[NT]	[NT]	[NT]	[NT]	99	[NT]

QUALITY	CONTROL:	Misc Ino	rg - Soil		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]	
Date prepared	-			15/01/2024	[NT]		[NT]	[NT]	15/01/2024		
Date analysed	-			15/01/2024	[NT]		[NT]	[NT]	15/01/2024		
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	99		
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	98		
Total Organic Carbon in soil/solids	mg/kg	100	INORG-137	<100	[NT]		[NT]	[NT]	94		

QU	ALITY CONT	ROL: CE	C.			Du	olicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			17/01/2024	[NT]		[NT]	[NT]	17/01/2024	
Date analysed	-			17/01/2024	[NT]		[NT]	[NT]	17/01/2024	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	103	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	108	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	98	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	102	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 341485

Revision No: R00

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

TRH Soil C10-C40 NEPM - # Percent recovery for the surrogate/matrix spike is not possible to report as the high concentration of analytes in sample/s 341485-1ms have caused interference.

Envirolab Reference: 341485 Page | 25 of 25

Revision No: R00

ESA-F-02 Chain of Custody (Internal)

ument Revision Date	22/08/2022		SA-F-02 COC - Ch	nain Of Custody (1 A101023.0722.00	internal cy	LABORA	TORY REFERE	ICE NO. (Lab use	ONLY):	1010	23.07	22.00/002/605
I PROJECT NUMER	(E.G., : A201021.1725	05)		002		LABORA			The second second		1/1	A MAN
DIFCT PHASE (E.G.,:	C01)			L05			1	N	SIGN	ATURE:	10/	GUSTODY SEAL INTACT:
JECT TASK (E.G.,: C	11)					RECEIVED	BY:	- I parcep	VED: PRES	ERVATION MET	HOD: N	
MPLES DELIVERED B	Y:					SAMPLES	CHILLED		OLDING TIME:	3	int	JPON RECEIPT: A A °C
MPLES DELIVERED 5				Ankita Saxena			LHEADSPACE		TIME: 12	In MM	TEMPERATURE	JPON RECEIR 11 1 1/1
MPLERS:		_		Standard TAT		DATE:	30/4/		EL SIGNATURE:		COMMENTS:	
RNAROUND (BUSIN	ESS DAY - BD):			26.04.2024		LIMS LO	T NO.		EL SIGNI	100		
			COLOR DE COLOR	GE: ☐ FREEZER: ☐		2	40187	N	Chanl			NOTES
			INOCIAL LEGIS	OTHER:		1	+0101.	ANA	LYSES REQUIRE	D		and the second s
TER TEST STORAGE	II.		3 34 WEEKS. —					1 1				POTENTIAL HAZARDOUS CONTAMINAN
			HARD COPY: □ E-MA	AIL: X			1 1 1	1 1 1	1 1 1	1 1 1		TI THE THE PROPERTY OF THE PRO
PORT FORMAT:			CONSULTANTS EMAIL: an	kita.sexena@ade.group		i e	$1 \cdot 1 \cdot 1$	4 4 1	1 1 1	1 1 1		ASBESTOS HYDROCARBONS
NSULTANTS SIGNA	TURE:		The state of the s			Soil NEPM guideline	IIII	4 1 4	1 1 1	1 1 1	1 1 1	LEAD/ARSENIC NO KNOWN CONTAMINATION
				7.10	and aroup	Ba.	1111			1 1 1	1 1 1	_ CONTAINIT
3.			Karin Azzam@ade.gro	up, please cc ankita.sexe	Hatwado.g.	١٤	1 1 1	1 1 1	1 1 1			☐ OTHER:
ROJECT MANAGERS	SIGNATURE:		and sam.goldsmith		50-000-	- E		1 1 1	1 1 1	1 1 1		LAB PLEASE *EMAIL COC RECEIPT:
NO3EE.	13/		Citing 2	T	DATA	1 =	НОГР	1 1 1	1 1 1	1 1 1	1 1 1	LAB FLEAGE
	1	DATA		CONTAINER	DAIA		±	1 1 1	1 1 1	1 1 1	1 1 1	Sample Comments
- (SAMPLE	DATA				1 8	111	1 1 1	1 1 1	1 1 1	1 1 1	
					NO. OF SAMPLE	Asbestos	111		1 1 1	1 1 1	1 1 1	1 1
				TYPE & PRESERVATIVE	CONTAINERS	1 1	111	1 1 1	1 1 1	1 1 1	1 1 1	1 1
	Sample ID (ADE)	MATRIX	SAMPLE DATE	TIPE & FILESEN	CONTAINERS	OH07	1 1 1	1 1 1	1 1 1	1 1 1		
LIMS Sample ID	Sample to (ADE)			1		0	111			+		
LIMS Sample ID				1		v				+++		
LIMS Sample ID (Lab Use)	1		20.04.2024	В	1	X	X			-		
(Lab Use)			26.04.2024	В	1	X			\rightarrow	+++		
(Lab Use) 2024014	TP1 0.2-0.3	Soil	25.04.2024						+++			
(Lab Use) 2024014 513	TP1_0.2-0.3 TP1_0.6-0.7	Soil	26.04.2024	В	11	^	X		1 1 1			
(Lab Use) 2024014 5(3	TP1_0.6-0.7	Soil Soil	26.04.2024	B B	1		Х					
(Lab Use) 2024014 5(3 514 515	TP1_0.6-0.7 TP2_0.2-0.3	Soil Soil Soil	26.04.2024 26.04.2024		1 1	×	X		-			
(Lab Use) 2024014 5(3 514 515 516	TP1_0.6-0.7	Soil Soil Soil	26.04.2024 26.04.2024 26.04.2024	В	1 1 1	X						
(Lab Use) 20 2 40 14 5 (3 3 14 5 15 5 16 5 17	TP1_0.6-0.7 TP2_0.2-0.3 TP2_0.6-0.7	Soil Soil Soil Soil	26.04.2024 26.04.2024 26.04.2024 26.04.2024	В В	1 1 1	X						
(Lab Use) 2a 2 40 14 5 (3 5 14 5 15 5 16	TP1 0.6-0.7 TP2 0.2-0.3 TP2 0.6-0.7 TP3 0.2-0.3	Soil Soil Soil	26.04.2024 26.04.2024 26.04.2024	B B B	1 1 1	X						

Container Type and Preservative: P = Unpreserved Plastic; PN = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; PNA = Sodium Hydroxide Preserved Plastic; PC = HCI preserved Plastic; VC = Vial HCI Preserved; SP = Sulfuric Preserved Plastic; ORC = Nitric Preserved ORC; PNA = Sodium Hydroxide Preserved Plastic; PC = HCI preserved Plastic; VC = Vial HCI Preserved; SP = Sulfuric Preserved Plastic; ORC = Nitric Preserved ORC; PNA = Sodium Hydroxide Preserved Plastic; PC = HCI preserved Plastic; VC = Vial HCI Preserved; SP = Sulfuric Preserved Plastic; ORC = Nitric Preserved ORC; PNA = Sodium Hydroxide Preserved Plastic; PC = HCI preserved Plastic; VC = Vial HCI Preserved; SP = Sulfuric Preserved Plastic; ORC = Nitric Preserved ORC; PNA = Sodium Hydroxide Preserved Plastic; PC = HCI preserved Plastic; VC = Vial HCI Preserved; SP = Sulfuric Preserved Plastic; ORC = Nitric Preserved ORC; PNA = Sodium Hydroxide Preserved Plastic; PC = HCI preserved Plastic; VC = Vial HCI Preserved; SP = Sulfuric Preserved Plastic; ORC = Nitric Preserved ORC; PNA = Sodium Hydroxide Preserved Plastic; PC = HCI preserved Plastic; VC = Vial HCI Preserved; SP = Sulfuric Preserved Plastic; PNA = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; PNA = Sodium Hydroxide Preserved Plastic; PC = HCI preserved Plastic; PC = HCI preserved Plastic; PNA = Nitric Preserved Plastic; PNA VB = Vial Sodium Bisulphate Preserved; VS = Vial Sulfuric Preserved; V = Unpreserved Vial; G = Amber Glass Unpreserved; SG = Sulfuric Preserved Amber Glass; F = Formaldehyde Preserved Glass; HS = HCl preserved Speciation bottle; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; J = Unpreserved Glass Jar; ASS = Plastic Bag for Acid Sulfate Soils; B = Unpreserved Bag.

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

CLIENT DETAILS			
Client	ADE Consulting Group		
Contact	Karin Azzam, Sam Goldsmith	h	
Samplers	Ankita Saxena		
SAMPLE RECEIPT DETAILS			
Project Number	A101023.0722.00/002/L05		
SLS Reference	2401875		
Number of samples	8		
Date samples received	30.04.2024		
Time samples received	12:10 PM		
Samples Received By	Natalie Chambers		
Temperature upon receipt (°C)	N/A	Thermometer Ref NO.	N/A
Turn Around Time requested	5 Working Days		
Expected Report Date	07.05.2024		

CONDITION OF SAMPLES UPON RECEIVAL

V	
V	
N/A	
✓	
N/A	
N/A	
	√ √

COMMENTS

This Report Contains:

Sample receipt non-conformities.
Summary of samples and requested analysis.
Requested report deliverables.

CONTACT US FOR ANY QUERIES

If you have any questions with respect to these samples please contact:

 Email
 sis@ade.group
 Contact
 Natalie Chambers

 Phone
 (+61) 0451 524 289
 Signed

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

INFORMATION SUMMARY	
SLS Reference	2401875
Project Number	A101023.0722.00/002/L05
Client	ADE Consulting Group
Contact	Karin Azzam, Sam Goldsmith
Samplers	Ankita Saxena
ANALYSIS UNDERWAY - I	Details of the following samples

					SUMMARY OF SAMPLES AND ANALYSIS RE
			7	НОГР	
Laboratory Sample ID	Sampling Date	Client Sample ID	ОНО	1 NO	
2024014513	26.04.2024	TP1_0.2-0.3	Х		
2024014514	26.04.2024	TP1_0.6-0.7		Х	
2024014515	26.04.2024	TP2_0.2-0.3	Х		
2024014516	26.04.2024	TP2_0.6-0.7		X	
2024014517	26.04.2024	TP3_0.2-0.3	Х		
2024014518	26.04.2024	TP3_0.4-0.5		X	
2024014519	26.04.2024	TP4_0.2-0.3	Х		
2024014520	26.04.2024	TP5_0.2-0.3	Х		

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669 A.B.N. 52 093 452 950

Analysis report: A101023.0722.00

Laboratory LOT NO: 2401875

 Date Received:
 30.04.2024

 Date Analysed:
 01.05.2024

 Report Date:
 01.05.2024

Client: ADE Consulting Group

Job Location: As Received

Analytical method: Polarised Light Microscopy with dispersion staining (ADE method ABI)

*Asbestos identification as per "National Environment Protection (Assessment of site contamination) Measure, Schedule B1" and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" is not coverd by NATA scope of accreditation

Analysis performed by:

Grace (Weichen) Jia

Approved asbestos identifier

Results Authorised By:

Grace (Weichen) Jia

Approved Signatory

General Comments:

Sydney Laboratory Services is responsible for all the information in the report, except that provided by the customer. All sampling information included in the report has been provided by the client.

Sample analysed as received.

Samples are stored for minimum period of 1 month if longer time is not advised by client.

Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.01g/kg (0.001% w/w) for friable asbestos and 0.1g/kg (0.01% w/w) for bonded asbestos.

This form of analysis is outside the scope of NATA accreditation.

Bonded asbestos containing material (bonded ACM): Bonded ACM comprises asbestos-containing-material which is in sound condition, although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve

Fibrous asbestos (FA): FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or was previously bonded and is now significantly degraded (crumbling).

Asbestos fines (AF): AF includes free fibres, small fibre bundles and also small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. Note: The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.

Client Sample ID.	Laboratory Sample No.	Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Weight (Dry Weight)	Trace Analysis Completed Y/N	Result	Comments
TP1_0.2-0.3	2024014513	Granulated Dark Soil	500mL	749 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos detected by polarized light microscopy including dispersion	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
TP2_0.2-0.3	2024014515	Granulated Dark Soil	500mL	841 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos	No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					detected by polarized light microscopy including dispersion staining.	polarized light microscopy including dispersion staining.	Nil
					Stairing.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
TP3_0.2-0.3	2024014517	Granulated Dark Soil	500mL	661 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos	No Amosite asbestos detected by polarized light microscopy including dispersion staining.	
					detected by polarized light microscopy including dispersion staining.	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
TP4_0.2-0.3	2024014519	Granulated Dark Soil	500mL	861 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos	No Amosite asbestos detected by polarized light microscopy including dispersion staining.	
					detected by polarized light microscopy including dispersion staining.	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining. No Synthetic Mineral Fibres detected by	Nil
						NO Synthetic Mineral Flores detected by polarized light microscopy including dispersion staining. Organic fibres detected by polarized light	Nil Nil
TDS 0.2.0.2	2024014520	Granulated Dark Soil	500ml	912 grams		microscopy including dispersion staining.	NGI NGI
IP5_0.2-0.3	2024014520	Granulated Dark Soll	South	813 grams		No Chrysotile assestos detected by polarized light microscopy including dispersion staining. No Amosite asbestos detected by polarized	Nil Nil
					Yes, no trace asbestos	light microscopy including dispersion staining.	Nil
					detected by polarized light microscopy including dispersion staining.	NO CYCCIOOLITE aspects of detected by polarized light microscopy including dispersion staining. No Synthetic Mineral Fibres detected by	Nil
						polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	IVIII

AIR CANISTER CHAIN OF CUSTODY

If sourced from an ALS Laboratory: please tick →

GGLADSTONE 46 Callemendah Drive Olinton GLD 4680 Ph. 67 747 I 5600 E: gladstone@alsglobal.com LBR13BANE 2 Byth Street Stafford OLD 4053 Ph. 07 5243 7222 Et amples brisbarre@aliglobat.com

DMELBOURNE 2-4 Westall Road Springvale VIC 3171 Ph: 03 8549 9600 E;samples, melbourno@alsglobal.com CMUDGEE 1/29 Sydney Road Mudgee NSW 2850 Ph 02 6372,6735 E: mudgee mail@alaglobal.com

DWOLLONGONG 1/19-21 Raten Black Dine Nith Willongong NEW 2100. Pt. 02:4225 3125 E. wollongong@alsglobal.com GITOKNSVILLE 13 Carlon Steet, Klivan GLO 4517 Pht. 07 47730000 E. Al Stenko, Zewiczalesguitztekokowa

L ABORATORY USE/ONLY/ (Circle)

CINCOVER A AT 3 Comery Place North Nova A SW 2541
PA 02 -4428 2065 E: morning and gestional complex 2065 E: morning and gestional complex 2065 E: morning and gestional complex 2065
El 20 El 20 E: septime April a gistigate

CLIENT: ADE CONSULTING CITOUR	TURNAROUND REQUIREMENTS: Standard TAT (List due date):	(List due date):			LABORATORY USE ONLY	(a)(Gircle)
ater USW 2128	(Standard TAT may be extended for multiple Non Standard sequential analysis suites)	Non Standard or urgent TAT (List due date):			Custody Sealifitaci? Rec L	MAN NEW WAY
PROJECT: (ammeray PS DSI PROJECT NO: 2), 0 + 22 ALS QUOTE NO.	LS QUOTE NO.:	COC SEQU	COC SEQUENCE NUMBER (Circle)	Circle)	Valves closed on Rect	ab V/N NE V/N NA
PURCHASE ORDER NO .: 23 072	OUNTRY OF ORIGIN: A WIST AL ! C.	COC: 7	3 4	9	Canister/Sampler Complete and	(NottDamaged: Yes No
PROJECT MANAGER: Karin Azzam, CONTAC	CONTACT PH: 0490 072877	2 	3 4	2 9	Other comment:	. Temperature 15, 260
SAMPLER: Karin Azzam & Sam Coldsmith SAMPLE	SAMPLER MOBILE: 0490 072877 RELINGUISHED BY:	3Y: RELINQUISHED BY:	SHED BY:	2	RELINQUISHED BY:	RELINQUISHED BY:
	EDD FORMAT (or default):	2/5/24	Sporter	Signature and datectime	Superior and defendance	Ségmaters and deltastime
Email Reports to (will default to PM if no other addresses are listed): Karin, Azzam (a) ade, Group	RECEN	RECEIVED BY:			RECEIVED BY:	RECEIVED BY:
Email Invoice to (will default to PM if no other addresses are listed): Sam, goldsmith (a) ade. gro!) JA	65.74 CADO	Synthesis (S	erd datestime	Signature and disolution	Separate and Haratima
COMMENTS/SPECJAL HANDLING/REPLACEMENT OR RETURN INSTRUCTIONS:)					

Additional Information		Comments on LORs required, potential hazards, likely contaminant levels, or camples requiring specific QC analysis etc. (Lote entamina retirement lots after dullen).								-	Environmental Division	er Reference	EN2404013	# 0. 3. EUSE.	
Additiona		Comments on LC hazards, likely contrequiring specific QC									 Fnvironme	Newcastle	EN2		
STED	ract suite price														
ANALYSES REQUESTED	Suite Codes must be listed to attract suite price														
ANAL	Suite Codes	ZHV-195	×	×	×		~								
Refer to Canister Verification Reports and COAs for pressures measured by the Lab	Reporting Requirements	LORs Units Ambient Soil Gas Other, ppbv, ppmv, air (NEPM) Indoor upim ² mg/m ²	X	X X	×										
Canister Gauge Refer to Ca Pressures (PSI)	Repor	Sampling Ambient Sol	80 1	8-	8-										
Caniste Pressur	:	MATRIX Sampling (eg Air, Soil Gas)	56, -30	56-30	15/24 56 -29										
Z		DATE / TIME RAMPLED	1000 2/5/24 56, -30	2/5/26 59-30	_ ~	, , ,									
GAS SAMPLE CONTAINER INFORMATION	PLE DETAILS	I	000	e o!	C ON OF UT										
E CONTAINER	CANISTER / SAMPLE DETAILS	CLIENT SAMPLE ID	SVOB	2015	1015		THE PARTY OF THE PARTY.				VI				
GAS SAMPLE		FLOW CONTROLLER SERIAL NO.	1//2	310	470										
CHICHI		CANISTER SERIAL NO.	A STATE OF THE PARTY OF THE PAR	906	1238			A de la	1.8.022						
T	VINOSEUSIA.	LABID													

Telephone: +51 2 4014 2500

Job Specific Instructions:

Enquiries: Client Services - Newcastle, Phone: +61 (02) 4014 2500, E-mail: alsenviro.newcastle@alsglobal.com

Client / Office: ADE Consulting Group	nsulting Group	ST STS	ALS USE ONLY
Contact: Sam Goldsmith	Sam Goldsmith	Request Received By:	HO.
Telephone:		Deliver By:	Asap
ALS Quotation:		Dispatch By:	asap
Delivery Address: ALS Sydney	-	Workorder:	1
		Agreed Rent Frae Period:	21 days

Special Instructions: ATTN: SEP AND KHALEDA_

Equipment Request

CANISTERS

Leak Checked Certified OK	オンマノンノ
Rental	\$120 ea
Cap	Yes
Valve	Ωľ
Cauge	Š
Sizo	1.4L
Canister Type	Entech Silonite MiniCan ^{7M}
٥ <mark>٧</mark>	n

CONNECTORS AND FLOW CONTROL

No	Equipment Type	Duration (hrs) (Flow (ml/min)	TiPiece	Gauge	l-Piece Gauge Certified	Scatod / Vacuum	Connection Q Quick Connect S Swagelok	Rental ¹
L. <u>.</u> .	Passive sampler - TWA			No	×es	Yes	Yes / No	a	Incl Above
m	Soil gas sampling train - single		60ml/min	ş	Yes	Yes	Yes / Yes	٥	Incl Above
	Soil gas sampling train - duplicate			Yes	Yes	Yes	Yes/Yes	a	ind Above
9	Quick-connect fittings - female QT	,				-	,	a	\$120 ea. Replacement
	Quick-connect fittings - male QT							a	\$120 ea. Replacement
_	Pressure Gauge - QT			,			Yes / Yes	a	\$250 ea. Replacement
١.	T-Piece - QT	,		Yes	No.	o _N	Yes/Yes	a	\$300 ea. Replacement
1.	T-Piece - Swagelok			Yes	ž	S		s	\$250 ea. Replacement
1	Additional 1/4" Swagelok nuts/ferrules						,	s	\$5 ea. Replacement
!	Sampling Kit Case - Soil Gas	,				•	Yes / -	,	\$200 Replacement
	Other (Specify)		1			tubing			
	,	_	-						

ALS use o	nly: Cle	ALS use only: Clean Certificates Included (Y / N)	Leak Check OK (Y / 🕦)		Recorded by:	Packed by:	by:
Canister S	Sampling Gu	Canister Sampling Guide Included (WNN) Blank COC Include (F/N)	nclude (V/N)	Dispate	Dispatch Time / Date:	\$ #1/h/bz	4
Courier:	Courier:	Consignment Note #:	Internal CO	Orre	CONTRA #Boxes:	Dispate	ispatched By: 165

ALS Supplied Equipment

Serial Number(s)	986 14248 (23818	3(0)	311,82-5	X \	
Item Description	1.4 L Silonite™ Mini©an	Soil gas sampler - Compact 60ml/min	QT vacuum gauge	Female QT to 1∕4″ tube connector	Male QT to 1%″ tube connector
Quantity	ro	m	-	м	-
Item	• • • • • • • • • • • • • • • • • • • •				an ()

NEFM (11/0)

Approved Date: 23/06/2022

Page 2 of 3

Approved Date: 23/06/2022

Page 1 of 3

Sampler SN: 211

Certified purpose: USEPA TO15 Sampler type: Soil Gas - Compact

LORs achievable: Ambient air ______ Restrictor type: #3

Instrument datafile: 240415_10.D Sampler valves: QT - Quick Connect
Nominal flowrate: 50-60 mL/min

Verification date: 15-Apr-2024 Gauge¹ on dispatch: -36 "Hg

Valid to (at least): 13-May-2024 Analyst: Dale Semple Approved by: DAS 16-Apr-2024

¹Gauge is indicative only. Reading varies with atmospheric pressure and may change in transit.

SAMPLER VERIFICATION PROTOCOL

Samplers are assembled with appropriate flow restriction for project-specific requirements and have been individually analysed to certify cleanliness according to the requirements of USEPA method TO15. Soil gas samplers are supplied under vacuum with self-sealing quick-connect fittings, effectively performing a shut-in test.

Each verification involves a check for contamination, leaks and damage to fittings.

ALS METHOD CODE: EP101

REFERENCE METHOD: Compendium Method TO15: Determination of Volatile Organic Compounds (VOCs) in air collected in specially-prepared canisters and analysed by Gas Chromatography/Mass Spectrometry (GC/MS)

Target Compound	Alternate name(s)	Target (ppbv)	Result (ppbv)
1,1,1,2-Tetrachloroethane	R-130a / Acetylidene tetrachloride	0.2	< 0.2
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	< 0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride	0.2	< 0.2
1,1,2-Trichloroethane	Vinyl trichloride	0.2	< 0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	< 0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	< 0.2
1,2,4-Trichlorobenzene	•	0.2	< 0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	< 0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	< 0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	< 0.2
1,2-Dichloroethane	Ethylene chloride	0.2	< 0.2
1,2-Dichloropropane	Propylene dichloride	0.2	< 0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	< 0.2
1,3-Butadiene	Biethylene	0.2	< 0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0.2	< 0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0.2	< 0.2
1,4-Dioxane	p-Dioxane	0.2	< 0.2
2,2,4-Trimethylpentane	Isooctane	0.2	< 0.2
2-Chloroprene	2-Chloro-1,3-butadiene	0.2	< 0.2
2-Chlorotoluene	o-Chlorotoluene	0.2	< 0.2
2-Isopropyltoluene	o-Cymene	0.2	< 0.2
4-Ethyltoluene	p-Ethyltoluene	0.2	< 0.2
Acetone	2-Propanone	0.2	< 0.2
Acetonitrile	Methyl cyanide	0.2	< 0.2
Acrolein	2-Propenal	0.2	< 0.2
Acrylon i trile	2-Propenenitrile	0.2	< 0.2
t solutions, right partner.			alsglob

right solutions, right partner.

alsglobal.com

Sampler SN: 310

Sampler type: Soil Gas - Compact Certified purpose: USEPA TO15

Restrictor type: #3 LORs achievable: Ambient air

Sampler valves: QT - Quick Connect

Nominal flowrate: 50-60 mL/min Instrument datafile: 240411_17.D Gauge¹ on dispatch: -29 "Hg Verification date: 11-Apr-2024

Valid to (at least): 09-May-2024 Approved by: DAS 12-Apr-2024 Analyst: Dale Semple

¹Gauge is indicative only. Reading varies with atmospheric pressure and may change in transit.

SAMPLER VERIFICATION PROTOCOL

Samplers are assembled with appropriate flow restriction for project-specific requirements and have been individually analysed to certify cleanliness according to the requirements of USEPA method TO15. Soil gas samplers are supplied under vacuum with self-sealing quick-connect fittings, effectively performing a shut-in test.

Each verification involves a check for contamination, leaks and damage to fittings.

ALS METHOD CODE: EP101

REFERENCE METHOD: Compendium Method TO15: Determination of Volatile Organic Compounds (VOCs) in air collected in specially-prepared canisters and analysed by Gas Chromatography/Mass Spectrometry (GC/MS)

Target Compound	Alternate name(s)	Target (ppbv)	Result (ppbv)
1,1,1,2-Tetrachloroethane	R-130a / Acetylidene tetrachloride	0.2	< 0.2
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	< 0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride	0.2	< 0.2
1,1,2-Trichloroethane	Vinyl trichloride	0.2	< 0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	< 0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	< 0.2
1,2,4-Trichlorobenzene	-	0.2	< 0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	< 0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	< 0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	< 0.2
1,2-Dichloroethane	Ethylene chloride	0.2	< 0.2
1,2-Dichloropropane	Propylene dichloride	0.2	< 0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	< 0.2
1,3-Butadiene	Biethylene	0.2	< 0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0.2	< 0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0.2	< 0.2
1,4-Dioxane	p-Dioxane	0.2	< 0.2
2,2,4-Trimethylpentane	Isooctane	0.2	< 0.2
2-Chloroprene	2-Chloro-1,3-butadiene	0.2	< 0.2
2-Chlorotoluene	o-Chlorotoluene	0.2	< 0.2
2-Isopropyltoluene	o-Cymene	0.2	< 0.2
4-Ethyltoluene	p-Ethyltoluene	0.2	< 0.2
Acetone	2-Propanone	0.2	< 0.2
Acetonitrile	Methyl cyanide	0.2	< 0.2
Acrolein	2-Propenal	0.2	<0.2
Acrylonitrile	2-Propenenitrile	0.2	<0.2
t solutions, right partner.			alsglob

alsglobal.com right solutions, right partner.

Canister SN: 12381

Certified purpose: USEPA TO15

Canister type: Entech Silonite - 'MiniCan'

LORs achievable: Ambient air

Canister volume: 1.4L

Instrument datafile: 240423_12.D

Canister valve: QT - Quick Connect Vacuum on dispatch: <0.01 psia

Verification date: 23-Apr-2024 Valid to (at least): 21-May-2024

Last stability check: 29-Sep-2023 Next check scheduled: 28-Sep-2025

Approved by: DAS 24-Apr-2024

Analyst: Dale Semple

CANISTER VERIFICATION PROTOCOL

Canisters are supplied under vacuum and have been individually analysed to certify cleanliness according to the requirements of USEPA method TO15. Canisters are leak checked for at least 24 hours prior to dispatch from the laboratory.

Each verification involves a check for contamination, leaks and damage to valves. Stability checks are performed every two years to ensure that all target analytes are completely recovered.

ALS METHOD CODE: EP101

REFERENCE METHOD: Compendium Method TO15: Determination of Volatile Organic Compounds (VOCs) in air collected in specially-prepared canisters and analysed by Gas Chromatography/Mass Spectrometry (GC/MS)

Target Compound	Alternate name(s)	Target	Result
	, .	(ppbv)	(ppbv)
1,1,1,2-Tetrachloroethane	R-130a / Acetylidene tetrachloride	0.2	<0.2
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride	0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride	0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	* <0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	<0.2
1,2,4-Trichlorobenzene		0.2	< 0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	< 0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	< 0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	< 0.2
1,2-Dichloroethane	Ethylene chloride	0.2	< 0.2
1,2-Dichloropropane	Propylene dichloride	0.2	< 0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	< 0.2
1,3-Butadiene	Biethylene	0.2	< 0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0.2	< 0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0.2	< 0.2
1,4-Dioxane	p-Dioxane	0.2	< 0.2
2,2,4-Trimethylpentane	Isooctane	0.2	< 0.2
2-Chloroprene	2-Chloro-1,3-butadiene	0.2	< 0.2
2-Chlorotoluene	o-Chlorotoluene	0.2	< 0.2
2-Isopropyltoluene	o-Cymene	0.2	< 0.2
4-Ethyltoluene	p-Ethyltoluene	0.2	< 0.2
Acetone	2-Propanone	0.2	< 0.2
Acetonitrile	Methyl cyanide	0.2	< 0.2
Acrolein	2-Propenal	0.2	< 0.2
Acrylonitrile	2-Propenenitrile	0.2	< 0.2
والمساورة والمارية وا			

right solutions, right partner.

alsglobal.com

Canister SN: 14249

Certified purpose: USEPA TO15

Canister type: Entech Silonite - 'MiniCan'

LORs achievable: Ambient air

Canister volume: 1.4L

Canister valve: QT - Quick Connect

Instrument datafile: 240423_28.D Verification date: 24-Apr-2024 Valid to (at least): 22-May-2024 Analyst: Dale Semple

Vacuum on dispatch: <0.01 psia Last stability check: 28-Nov-2022 Next check scheduled: 27-Nov-2024

Approved by: DAS 23-Apr-2024

CANISTER VERIFICATION PROTOCOL

Canisters are supplied under vacuum and have been individually analysed to certify cleanliness according to the requirements of USEPA method TO15. Canisters are leak checked for at least 24 hours prior to dispatch from the laboratory.

Each verification involves a check for contamination, leaks and damage to valves. Stability checks are performed every two years to ensure that all target analytes are completely recovered.

ALS METHOD CODE: EP101

REFERENCE METHOD: Compendium Method TO15: Determination of Volatile Organic Compounds (VOCs) in air collected in specially-prepared canisters and analysed by Gas Chromatography/Mass Spectrometry (GC/MS)

Target Compound	Alternate name(s)	Target	Result
raiger compound	Alternate hume(s)	(ppbv)	(ppbv)
1,1,1,2-Tetrachloroethane	R-130a / Acetylidene tetrachloride	0.2	< 0.2
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	< 0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride	0.2	< 0.2
1,1,2-Trichloroethane	Vinyl trichloride	0.2	< 0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	< 0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	< 0.2
1,2,4-Trichlorobenzene		0.2	< 0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	< 0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	< 0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	< 0.2
1,2-Dichloroethane	Ethylene chloride	0.2	< 0.2
1,2-Dichloropropane	Propylene dichloride	0.2	< 0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	< 0.2
1,3-Butadiene	Biethylene	0.2	< 0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0.2	< 0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0.2	< 0.2
1,4-Dioxane	p-Dioxane	0.2	< 0.2
2,2,4-Trimethylpentane	Isooctane	0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene	0.2	< 0.2
2-Chlorotoluene	o-Chlorotoluene	0.2	< 0.2
2-Isopropyltoluene	o-Cymene	0.2	< 0.2
4-Ethyltoluene	p-Ethyltoluene	0.2	< 0.2
Acetone	2-Propanone	0.2	< 0.2
Acetonitrile	Methyl cyanide	0.2	< 0.2
Acrolein	2-Propenal	0.2	< 0.2
Acrylonitrile	2-Propenenitrile	0.2	< 0.2
and the same of the same and	,		1. 1. 1

right solutions, right partner.

alsglobal.com

Canister SN: 996

Certified purpose: USEPA TO15 Canister type: Entech Silonite - 'MiniCan'

LORs achievable: Ambient air Canister volume: 1.4L

Canister valve: QT - Quick Connect

Instrument datafile: 240422_08.D Vacuum on dispatch: <0.01 psia

Verification date: 22-Apr-2024

Valid to (at least): 20-May-2024

Analyst: Dale Semple

Vacuum on dispatch: <0.01 psia

Last stability check: 29-Sep-2022

Next check scheduled: 28-Sep-2024

Approved by: DAS 23-Apr-2024

CANISTER VERIFICATION PROTOCOL

Canisters are supplied under vacuum and have been individually analysed to certify cleanliness according to the requirements of USEPA method TO15. Canisters are leak checked for at least 24 hours prior to dispatch from the laboratory.

Each verification involves a check for contamination, leaks and damage to valves. Stability checks are performed every two years to ensure that all target analytes are completely recovered.

ALS METHOD CODE: EP101

REFERENCE METHOD: Compendium Method TO15: Determination of Volatile Organic Compounds (VOCs) in air collected in specially-prepared canisters and analysed by Gas Chromatography/Mass Spectrometry (GC/MS)

Target Compound	Alternate name(s)	Target (ppbv)	Result (ppbv)
1,1,1,2-Tetrachloroethane	R-130a / Acetylidene tetrachloride	(ppbv) 0.2	(ppbv) <0.2
1,1,1-Trichloroethane	1,1,1-TCA / Methyl chloroform	0.2	<0.2
1,1,2,2-Tetrachloroethane	R-130 / Acetylene tetrachloride	0.2	<0.2
1,1,2-Trichloroethane	Vinyl trichloride	0.2	<0.2
1,1-Dichloroethane	Ethylidene chloride	0.2	<0.2
1,1-Dichloroethene	1,1-DCE / Vinylidene chloride	0.2	<0.2
1,2,4-Trichlorobenzene	in been vinginaone emenae	0.2	<0.2
1,2,4-Trimethylbenzene	Pseudocumene	0.2	<0.2
1,2-Dibromoethane	EDB / Ethylene dibromide	0.2	<0.2
1,2-Dichlorobenzene	o-Dichlorobenzene	0.2	<0.2
1,2-Dichloroethane	Ethylene chloride	0.2	<0.2
1,2-Dichloropropane	Propylene dichloride	0.2	< 0.2
1,3,5-Trimethylbenzene	Mesitylene	0.2	< 0.2
1,3-Butadiene	Biethylene	0.2	< 0.2
1,3-Dichlorobenzene	m-Dichlorobenzene	0.2	< 0.2
1,4-Dichlorobenzene	p-Dichlorobenzene	0.2	< 0.2
1,4-Dioxane	p-Dioxane	0.2	< 0.2
2,2,4-Trimethylpentane	Isooctane	0.2	<0.2
2-Chloroprene	2-Chloro-1,3-butadiene	0.2	< 0.2
2-Chlorotoluene	o-Chlorotoluene	0.2	< 0.2
2-Isopropyltoluene	o-Cymene	0.2	< 0.2
4-Ethyltoluene	p-Ethyltoluene	0.2	< 0.2
Acetone	2-Propanone	0.2	< 0.2
Acetonitrile	Methyl cyanide	0.2	< 0.2
Acrolein	2-Propenal	0.2	< 0.2
Acrylonitrile	2-Propenenitrile	0.2	< 0.2
t solutions, right partner			alsglob

right solutions, right partner.

alsglobal.com

Sampler SN: 027

Certified purpose: USEPA TO15

Sampler type: Soil Gas - Compact

LORs achievable: Ambient-air

Restrictor type: #3

Instrument datafile: 240415_08.D

Sampler valves: QT - Quick Connect

Verification date: 15-Apr-2024 Valid to (at least): 13-May-2024 Nominal flowrate: 50-60 mL/min Gauge¹ on dispatch: -28 "Hg

Analyst: Dale Semple

Approved by: DAS 16-Apr-2024

¹Gauge is indicative only. Reading varies with atmospheric pressure and may change in transit.

SAMPLER VERIFICATION PROTOCOL

Samplers are assembled with appropriate flow restriction for project-specific requirements and have been individually analysed to certify cleanliness according to the requirements of USEPA method TO15. Soil gas samplers are supplied under vacuum with self-sealing quick-connect fittings, effectively performing a shut-in test.

Each verification involves a check for contamination, leaks and damage to fittings.

ALS METHOD CODE: EP101

REFERENCE METHOD: Compendium Method TO15: Determination of Volatile Organic Compounds (VOCs) in air collected in specially-prepared canisters and analysed by Gas Chromatography/Mass Spectrometry (GC/MS)

Target Compound Alternate name(s) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 2 Ethylidene chloride 2 Ethylidene chloride	(ppbv)	
1,1,1-Trichloroethane1,1,1-TCA / Methyl chloroform1,1,2,2-TetrachloroethaneR-130 / Acetylene tetrachloride1,1,2-TrichloroethaneVinyl trichloride1,1-DichloroethaneEthylidene chloride	0.2	(ppbv) <0.2
1,1,2,2-Tetrachloroethane R-130 / Acetylene tetrachloride Vinyl trichloride 1,1-Dichloroethane Ethylidene chloride	0.2	<0.2
1,1,2-TrichloroethaneVinyl trichloride1,1-DichloroethaneEthylidene chloride		
1,1-Dichloroethane Ethylidene chloride	0.2	<0.2
·	0.2	<0.2
	0.2	<0.2
1,1-Dichloroethene 1,1-DCE / Vinylidene chloride	0.2	<0.2
1,2,4-Trichlorobenzene	0.2	<0.2
1,2,4-Trimethylbenzene Pseudocumene	0.2	<0.2
1,2-Dibromoethane EDB / Ethylene dibromide	0.2	<0.2
1,2-Dichlorobenzene o-Dichlorobenzene	0.2	<0.2
1,2-Dichloroethane Ethylene chloride	0.2	<0.2
1,2-Dichloropropane Propylene dichloride	0.2	<0.2
1,3,5-Trimethylbenzene Mesitylene	0.2	< 0.2
1,3-Butadiene Biethylene	0.2	<0.2
1,3-Dichlorobenzene m-Dichlorobenzene	0.2	<0.2
1,4-Dichlorobenzene p-Dichlorobenzene	0.2	<0.2
1,4-Dioxane p-Dioxane	0.2	<0.2
2,2,4-Trimethylpentane Isooctane	0.2	<0.2
2-Chloroprene 2-Chloro-1,3-butadiene	0.2	< 0.2
2-Chlorotoluene o-Chlorotoluene	0.2	<0.2
2-Isopropyltoluene o-Cymene	0.2	<0.2
4-Ethyltoluene p-Ethyltoluene	0.2	< 0.2
Acetone 2-Propanone	0.2	< 0.2
Acetonitrile Methyl cyanide	0.2	< 0.2
Acrolein 2-Propenal	0.2	<0.2
Acrylonitrile 2-Propenenitrile	0.2	<0.2
solutions, right partner.		alsglobal.com

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd Laboratory : Environmental Division Newcastle

Contact : Karin Azzam Contact

SILVERWATER NSW 2128

Address : 6/7 MILLENIUM COURT Address : 5/585 Maitland Road Mayfield West

E-mail

NSW Australia 2304

E-mail : karin.azzam@ade.group

 Telephone
 : -- Telephone
 : +61 2 4014 2500

 Facsimile
 : -- Facsimile
 : +61 2 4967 7382

Project : 23.0722 Cammeray PS DSI Page : 1 of 2

 Order number
 : 23.0722
 Quote number
 : EP2023ADENVT0001 (EN/111)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : Karin Azzam, SAM GOLDSMITH

Dates

Date Samples Received : 06-May-2024 09:00 Issue Date : 06-May-2024 Client Requested Due : 13-May-2024 Scheduled Reporting Date : 13-May-2024

Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Not Available

No. of coolers/boxes : ---- Temperature : 21.0

Receipt Detail : No. of samples received / analysed : 3 / 3

General Comments

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample Disposal Aqueous Chemistry (3 weeks), Aqueous Microbiological (1 week), Solid (2 months ± 1 week) from receipt of samples.

Issue Date : 06-May-2024

Page

2 of 2 EN2404013 Amendment 0 Work Order Client : ADE Consulting Group Pty Ltd

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determin tasks, that are inclif no sampling default 00:00 on	ry for the execution may contain addition of moisture uded in the package. Itime is provided, the date of sampling date with the date of the date of the date of the date of the date with the date of the date with the date of the	ng. If no sampling date ill be assumed by the ockets without a time	AIR - CAN-1.4L-SAMPLE Canister Sampling - Field Data (1.4 litre canister)	ł - SG-AH2 15 VOCs + NEPM TRH + TPHCWG - Soil
ID EN2404013-001	02-May-2024 10:00	SV03 C14249 S211	V San	AIR
	,	_		V
EN2404013-002	02-May-2024 10:15	SV02 C996_S310	✓	✓
EN2404013-003	02-May-2024 10:30	SV01 C1238_S027	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS ADE

- A4 - AU Tax Invoice (INV)	Email	accounts@ade.group
Karin Azzam		
 *AU Certificate of Analysis - NATA (COA) 	Email	karin.azzam@ade.group
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	karin.azzam@ade.group
- *AU QC Report - DEFAULT (Anon QC Rep) - USEPA (QC-USEPA)	Email	karin.azzam@ade.group
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	karin.azzam@ade.group
- Chain of Custody (CoC) (COC)	Email	karin.azzam@ade.group
- EDI Format - ENMRG (ENMRG)	Email	karin.azzam@ade.group
- EDI Format - ESDAT (ESDAT)	Email	karin.azzam@ade.group
- EDI Format - XTab (XTAB)	Email	karin.azzam@ade.group
SAM GOLDSMITH		
- A4 - AU Tax Invoice (INV)	Email	sam.goldsmith@ade.group

CERTIFICATE OF ANALYSIS

Work Order : EN2404013

Client ADE Consulting Group Pty Ltd

Contact : Karin Azzam

Address : 6/7 MILLENIUM COURT

SILVERWATER NSW 2128

Telephone

Project : 23.0722 Cammeray PS DSI

Order number : 23.0722

C-O-C number

Sampler : Karin Azzam, SAM GOLDSMITH

Site

Quote number : EN/111 No. of samples received : 3

No. of samples analysed : 3 Page : 1 of 11

> Laboratory : Environmental Division Newcastle

Contact

Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

Telephone : +61 2 4014 2500

Date Samples Received : 06-May-2024 09:00

Date Analysis Commenced : 06-May-2024

Issue Date : 14-May-2024 12:30

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories **Position** Accreditation Category

Dale Semple Newcastle, Mayfield West, NSW Analyst

Senior Organic Chemist Daniel Junek Newcastle - Organics, Mayfield West, NSW Page : 2 of 11 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd Project : 23.0722 Cammeray PS DSI

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- CAN-001: Results for Pressure As Received are measured under controlled conditions using calibrated laboratory gauges. These results are expressed as an absolute pressure. Equivalent gauge pressures may be calculated by subtracting the Pressure Laboratory Atmosphere.
- CAN-001: Results for Pressure Gauge As Received are obtained from uncalibrated field gauges and are indicative only. These results may not precisely match calibrated gauge readings and may vary from field measurements due to changes in temperature and pressure.
- CAN-001: Results for Vacuum As Received are calculated from the pressures of the canister and laboratory atmosphere at the time of receipt, and are expressed as a measure of the vacuum remaining. A positive value indicates that the canister was below atmospheric pressure upon receipt.
- EP101: ALS quality procedures (QWI-EN/38) permit, for organic trace analysis, that the recoveries of 20% of target compounds may lie outside of established control limits as long as these remain within acceptable ranges defined within referenced USEPA methods.
- EP101, EP103: Results reported in mg/m³ are calculated from PPMV results based on a temperature of 25°C and atmospheric pressure of 101.3 kPa.

Page : 3 of 11 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd Project : 23.0722 Cammeray PS DSI

Sub-Matrix: SOIL GAS (Matrix: AIR)			Sample ID	SV03 C14249_S211	SV02 C996_S310	SV01 C1238_S027	
		Sampli	ng date / time	02-May-2024 10:00	02-May-2024 10:15	02-May-2024 10:30	
Compound	CAS Number	LOR	Unit	EN2404013-001	EN2404013-002	EN2404013-003	
				Result	Result	Result	
EP101: VOCs by USEPA Method To							
Freon 12	75-71-8		mg/m³	<0.250	<0.250	<0.250	
Chloromethane	74-87-3	0.100	mg/m³	<0.100	<0.100	<0.100	
Freon 114	76-14-2	0.350	mg/m³	<0.350	<0.350	<0.350	
Vinyl chloride	75-01-4	0.0051	mg/m³	<0.0051	<0.0051	<0.0051	
Bromomethane	74-83-9	0.190	mg/m³	<0.190	<0.190	<0.190	
Chloroethane	75-00-3	0.130	mg/m³	<0.130	<0.130	<0.130	
Freon 11	75-69-4	0.280	mg/m³	<0.280	<0.280	<0.280	
1.1-Dichloroethene	75-35-4	0.200	mg/m³	<0.200	<0.200	<0.200	
Dichloromethane	75-09-2	0.170	mg/m³	<0.170	<0.170	<0.170	
Freon 113	76-13-1	0.380	mg/m³	<0.380	<0.380	<0.380	
1.1-Dichloroethane	75-34-3	0.200	mg/m³	<0.200	<0.200	<0.200	
cis-1.2-Dichloroethene	156-59-2	0.0200	mg/m³	<0.0200	<0.0200	<0.0200	
Chloroform	67-66-3	0.240	mg/m³	<0.240	<0.240	<0.240	
1.2-Dichloroethane	107-06-2	0.200	mg/m³	<0.200	<0.200	<0.200	
1.1.1-Trichloroethane	71-55-6	0.270	mg/m³	<0.270	<0.270	<0.270	
Benzene	71-43-2	0.100	mg/m³	<0.100	<0.100	<0.100	
Carbon Tetrachloride	56-23-5	0.310	mg/m³	<0.310	<0.310	<0.310	
1.2-Dichloropropane	78-87-5	0.230	mg/m³	<0.230	<0.230	<0.230	
Trichloroethene	79-01-6	0.0054	mg/m³	<0.0054	<0.0054	<0.0054	
cis-1.3-Dichloropropylene	10061-01-5	0.230	mg/m³	<0.230	<0.230	<0.230	
trans-1.3-Dichloropropene	10061-02-6	0.230	mg/m³	<0.230	<0.230	<0.230	
1.1.2-Trichloroethane	79-00-5	0.270	mg/m³	<0.270	<0.270	<0.270	
Toluene	108-88-3	0.190	mg/m³	<0.190	<0.190	0.236	
1.2-Dibromoethane (EDB)	106-93-4	0.380	mg/m³	<0.380	<0.380	<0.380	
Tetrachloroethene	127-18-4	0.340	mg/m³	<0.340	<0.340	<0.340	
Chlorobenzene	108-90-7	0.230	mg/m³	<0.230	<0.230	<0.230	

Page : 4 of 11 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd Project : 23.0722 Cammeray PS DSI

Sub-Matrix: SOIL GAS (Matrix: AIR)			Sample ID	SV03 C14249_S211	SV02 C996_S310	SV01 C1238_S027	
			ng date / time	02-May-2024 10:00	02-May-2024 10:15	02-May-2024 10:30	
Compound	CAS Number	LOR	Unit	EN2404013-001	EN2404013-002	EN2404013-003	
				Result	Result	Result	
EP101: VOCs by USEPA Method TO				0.000	0.000	0.000	
Ethylbenzene	100-41-4	0.220	mg/m³	<0.220	<0.220	<0.220	
meta- & para-Xylene	108-38-3 106-42-3	0.430	mg/m³	<0.430	<0.430	<0.430	
Styrene	100-42-5	0.210	mg/m³	<0.210	<0.210	<0.210	
1.1.2.2-Tetrachloroethane	79-34-5	0.340	mg/m³	<0.340	<0.340	<0.340	
ortho-Xylene	95-47-6	0.220	mg/m³	<0.220	<0.220	<0.220	
4-Ethyltoluene	622-96-8	0.240	mg/m³	<0.240	<0.240	<0.240	
Total Xylenes		0.650	mg/m³	<0.650	<0.650	<0.650	
1.3.5-Trimethylbenzene	108-67-8	0.240	mg/m³	<0.240	<0.240	<0.240	
1.2.4-Trimethylbenzene	95-63-6	0.240	mg/m³	<0.240	<0.240	<0.240	
1.3-Dichlorobenzene	541-73-1	0.300	mg/m³	<0.300	<0.300	<0.300	
Benzylchloride	100-44-7	0.260	mg/m³	<0.260	<0.260	<0.260	
1.4-Dichlorobenzene	106-46-7	0.300	mg/m³	<0.300	<0.300	<0.300	
1.2-Dichlorobenzene	95-50-1	0.300	mg/m³	<0.300	<0.300	<0.300	
1.2.4-Trichlorobenzene	120-82-1	0.370	mg/m³	<0.370	<0.370	<0.370	
Hexachlorobutadiene	87-68-3	0.530	mg/m³	<0.530	<0.530	<0.530	
Acetone	67-64-1	0.120	mg/m³	<0.120	<0.120	<0.120	
Bromodichloromethane	75-27-4	0.340	mg/m³	<0.340	<0.340	<0.340	
1.3-Butadiene	106-99-0	0.110	mg/m³	<0.110	<0.110	<0.110	
Carbon disulfide	75-15-0	0.160	mg/m³	<0.160	<0.160	<0.160	
1-Chloro-2-propene (Allyl chloride)	107-05-1	0.160	mg/m³	<0.160	<0.160	<0.160	
Cyclohexane	110-82-7	0.170	mg/m³	<0.170	<0.170	<0.170	
Dibromochloromethane	124-48-1	0.430	mg/m³	<0.430	<0.430	<0.430	
1.4-Dioxane	123-91-1	0.180	mg/m³	<0.180	<0.180	<0.180	
Ethylacetate	9002-89-5	0.180	mg/m³	<0.180	<0.180	<0.180	
trans-1.2-Dichloroethene	156-60-5	0.200	mg/m³	<0.200	<0.200	<0.200	
Heptane	142-82-5	0.200	mg/m³	<0.200	<0.200	<0.200	

Page : 5 of 11 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd Project : 23.0722 Cammeray PS DSI

Sub-Matrix: SOIL GAS (Matrix: AIR)			Sample ID	SV03 C14249_S211	SV02 C996_S310	SV01 C1238_S027	
			ng date / time	02-May-2024 10:00	02-May-2024 10:15	02-May-2024 10:30	
Compound	CAS Number	LOR	Unit	EN2404013-001	EN2404013-002	EN2404013-003	
				Result	Result	Result	
EP101: VOCs by USEPA Method TO				0.400	2 122	0.400	
Hexane	110-54-3		mg/m³	<0.180	0.486	<0.180	
Isooctane	540-84-1	0.230	mg/m³	<0.230	<0.230	<0.230	
Isopropyl Alcohol	67-63-0	0.120	mg/m³	<0.120	<0.120	<0.120	
2-Butanone (MEK)	78-93-3	0.150	mg/m³	<0.150	<0.150	<0.150	
Methyl iso-Butyl ketone	108-10-1	0.200	mg/m³	<0.200	<0.200	<0.200	
2-Hexanone (MBK)	591-78-6	0.200	mg/m³	<0.200	<0.200	<0.200	
Propene	115-07-1	0.0900	mg/m³	<0.0900	6.24	<0.0900	
Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.180	mg/m³	<0.180	<0.180	<0.180	
Tetrahydrofuran	109-99-9	0.150	mg/m³	<0.150	<0.150	<0.150	
Bromoform	75-25-2	0.520	mg/m³	<0.520	<0.520	<0.520	
Vinyl Acetate	108-05-4	0.180	mg/m³	<0.180	<0.180	<0.180	
Vinyl bromide	593-60-2	0.220	mg/m³	<0.220	<0.220	<0.220	
Naphthalene	91-20-3	0.100	mg/m³	<0.100	<0.100	<0.100	
2-Chlorotoluene	95-49-8	0.260	mg/m³	<0.260	<0.260	<0.260	
EP101: VOCs by USEPA Method TO	15r						
Freon 12	75-71-8	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Chloromethane	74-87-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Freon 114	76-14-2	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Vinyl chloride	75-01-4	0.0020	ppmv	<0.0020	<0.0020	<0.0020	
Bromomethane	74-83-9	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Chloroethane	75-00-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Freon 11	75-69-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1.1-Dichloroethene	75-35-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Dichloromethane	75-09-2	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Freon 113	76-13-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1.1-Dichloroethane	75-34-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	

Page : 6 of 11 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd Project : 23.0722 Cammeray PS DSI

Sub-Matrix: SOIL GAS (Matrix: AIR)	Sample ID			SV03 C14249_S211	SV02 C996_S310	SV01 C1238_S027	
		Samplii	ng date / time	02-May-2024 10:00	02-May-2024 10:15	02-May-2024 10:30	
Compound	CAS Number	LOR	Unit	EN2404013-001	EN2404013-002	EN2404013-003	
				Result	Result	Result	
EP101: VOCs by USEPA Method TO							
cis-1.2-Dichloroethene	156-59-2	0.0050	ppmv	<0.0050	<0.0050	<0.0050	
Chloroform	67-66-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1.2-Dichloroethane	107-06-2	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1.1.1-Trichloroethane	71-55-6	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Benzene	71-43-2	0.0300	ppmv	<0.0300	<0.0300	<0.0300	
Carbon Tetrachloride	56-23-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1.2-Dichloropropane	78-87-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Trichloroethene	79-01-6	0.0010	ppmv	<0.0010	<0.0010	<0.0010	
cis-1.3-Dichloropropylene	10061-01-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
trans-1.3-Dichloropropene	10061-02-6	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1.1.2-Trichloroethane	79-00-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Toluene	108-88-3	0.0500	ppmv	<0.0500	<0.0500	0.0627	
1.2-Dibromoethane (EDB)	106-93-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Tetrachloroethene	127-18-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Chlorobenzene	108-90-7	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Ethylbenzene	100-41-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
meta- & para-Xylene	108-38-3 106-42-3	0.100	ppmv	<0.100	<0.100	<0.100	
Styrene	100-42-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1.1.2.2-Tetrachloroethane	79-34-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
ortho-Xylene	95-47-6	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
4-Ethyltoluene	622-96-8	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1.3.5-Trimethylbenzene	108-67-8	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1.2.4-Trimethylbenzene	95-63-6	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1.3-Dichlorobenzene	541-73-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Benzylchloride	100-44-7	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1.4-Dichlorobenzene	106-46-7	0.0500	ppmv	<0.0500	<0.0500	<0.0500	

Page : 7 of 11 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd Project : 23.0722 Cammeray PS DSI

Sub-Matrix: SOIL GAS (Matrix: AIR)		0"	Sample ID	SV03 C14249_S211	SV02 C996_S310	SV01 C1238_S027	
			ng date / time	02-May-2024 10:00	02-May-2024 10:15	02-May-2024 10:30	
Compound	CAS Number	LOR	Unit	EN2404013-001 Result	EN2404013-002 Result	EN2404013-003 Result	
EP101: VOCs by USEPA Method TO15	or - Continued			Result	Result	Nesuit	
1.2-Dichlorobenzene	95-50-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1.2.4-Trichlorobenzene	120-82-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Hexachlorobutadiene	87-68-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Acetone	67-64-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Bromodichloromethane	75-27-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1.3-Butadiene	106-99-0	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Carbon disulfide	75-15-0	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1-Chloro-2-propene (Allyl chloride)	107-05-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Cyclohexane	110-82-7	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Dibromochloromethane	124-48-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
1.4-Dioxane	123-91-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Ethylacetate	9002-89-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
trans-1.2-Dichloroethene	156-60-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Heptane	142-82-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Hexane	110-54-3	0.0500	ppmv	<0.0500	0.138	<0.0500	
Isooctane	540-84-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Isopropyl Alcohol	67-63-0	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
2-Butanone (MEK)	78-93-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Methyl iso-Butyl ketone	108-10-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
2-Hexanone (MBK)	591-78-6	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Propene	115-07-1	0.0500	ppmv	<0.0500	3.63	<0.0500	
Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Tetrahydrofuran	109-99-9	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Bromoform	75-25-2	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Vinyl Acetate	108-05-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Vinyl bromide	593-60-2	0.0500	ppmv	<0.0500	<0.0500	<0.0500	

Page : 8 of 11 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd Project : 23.0722 Cammeray PS DSI

Sub-Matrix: SOIL GAS (Matrix: AIR)			Sample ID	SV03 C14249_S211	SV02 C996_S310	SV01 C1238_S027		
			ng date / time	02-May-2024 10:00	02-May-2024 10:15	02-May-2024 10:30		
Compound	CAS Number	LOR	Unit	EN2404013-001	EN2404013-002	EN2404013-003		
				Result	Result	Result		
EP101: VOCs by USEPA Method TO15r -								
Naphthalene	91-20-3	0.0190	ppmv	<0.0190	<0.0190	<0.0190		
2-Chlorotoluene	95-49-8	0.0500	ppmv	<0.0500	<0.0500	<0.0500		
EP103: Petroleum Hydrocarbons in Gase	eous Samples							
C6 - C9 Fraction		5.00	ppmv	<5.00	<5.00	<5.00		
C10 - C14 Fraction		5.00	ppmv	<5.00	<5.00	<5.00		
EP103: Petroleum Hydrocarbons in Gase	eous Samples (C	alc Conc						
C6 - C9 Fraction		20.0	mg/m³	<20.0	<20.0	<20.0		
C10 - C14 Fraction		35.0	mg/m³	<35.0	<35.0	<35.0		
EP103: Total Recoverable Hydrocarbons	- NEPM 2013		1					
C6 - C10 Fraction	C6_C10	5.00	ppmv	<5.00	<5.00	<5.00		
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	5.00	ppmv	<5.00	<5.00	<5.00		
>C10 - C16 Fraction		5.00	ppmv	<5.00	<5.00	<5.00		
>C10 - C16 Fraction minus Naphthalene (F2)		5.00	ppmv	<5.00	<5.00	<5.00		
EP103: Total Recoverable Hydrocarbons	- NEPM 2013 (C	alc Conc	1					
C6 - C10 Fraction	C6_C10	20.0	mg/m³	<20.0	<20.0	<20.0		
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20.0	mg/m³	<20.0	<20.0	<20.0		
>C10 - C16 Fraction		40.0	mg/m³	<40.0	<40.0	<40.0		
>C10 - C16 Fraction minus Naphthalene (F2)		40.0	mg/m³	<40.0	<40.0	<40.0		
EP103-S: CRCCARE PVI Aliphatic Hydro	carbon Fraction	s						
Aliphatic C6-C10		5.00	ppmv	<5.00	<5.00	<5.00		
Aliphatic > C10-C16		5.00	ppmv	<5.00	<5.00	<5.00	****	
EP103-S: CRCCARE PVI Aliphatic Hydro	carbon Fraction	s (Calc Co	onc)					
Aliphatic C6-C10		20.0	mg/m³	<20.0	<20.0	<20.0		
Aliphatic > C10-C16		37.0	mg/m³	<37.0	<37.0	<37.0		
EP103-S: CRCCARE PVI Aromatic Hydro	carbon Fraction	s						

Page : 9 of 11 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd Project : 23.0722 Cammeray PS DSI

Sub-Matrix: SOIL GAS (Matrix: AIR)			Sample ID	SV03 C14249_S211	SV02 C996_S310	SV01 C1238_S027	
			ng date / time	02-May-2024 10:00	02-May-2024 10:15	02-May-2024 10:30	
Compound	CAS Number	LOR	Unit	EN2404013-001	EN2404013-002	EN2404013-003	
				Result	Result	Result	
EP103-S: CRCCARE PVI Aromatic Hydro	carbon Fraction			0.700	0.700	0.700	
Aromatics C6-C10		0.700	ppmv	<0.700	<0.700	<0.700	
Aromatics C6-C10 minus BTEX (F1 Aromatic)		0.400	ppmv	<0.400	<0.400	<0.400	
Aromatic > C10-C16		0.200	ppmv	<0.200	<0.200	<0.200	
Aromatics >C10-C16 minus Naphthalene (F2 Aromatic)		0.150	ppmv	<0.150	<0.150	<0.150	
P103-S: CRCCARE PVI Aromatic Hydro	carbon Fraction	s (Calc C	onc)				
Aromatics C6-C10		3.00	mg/m³	<3.00	<3.00	<3.00	
Aromatics C6-C10 minus BTEX (F1 Aromatic)		1.40	mg/m³	<1.40	<1.40	<1.40	
Aromatic > C10-C16		1.40	mg/m³	<1.40	<1.40	<1.40	
Aromatics >C10-C16 minus Naphthalene (F2 Aromatic)		1.40	mg/m³	<1.40	<1.40	<1.40	
EP103-S: TPH CWG Aliphatic Hydrocarb	on Fractions						
Aliphatic >C5-C6		5.00	ppmv	<5.00	<5.00	<5.00	
Aliphatic >C6-C8	TPHCWG-ALV2	5.00	ppmv	<5.00	<5.00	<5.00	
Aliphatic >C8-C10	TPHCWG-ALV3	5.00	ppmv	<5.00	<5.00	<5.00	
Aliphatic >C10-C12	TPHCWG-ALE1	5.00	ppmv	<5.00	<5.00	<5.00	
P103-S: TPH CWG Aliphatic Hydrocarb	on Fractions (Ca	ılc Conc)					
Aliphatic >C5-C6		16.5	mg/m³	<16.5	<16.5	<16.5	
Aliphatic >C6-C8	TPHCWG-ALV2	20.0	mg/m³	<20.0	<20.0	<20.0	
Aliphatic >C8-C10	TPHCWG-ALV3	25.0	mg/m³	<25.0	<25.0	<25.0	
Aliphatic >C10-C12	TPHCWG-ALE1	30.0	mg/m³	<30.0	<30.0	<30.0	
P103-S: TPH CWG Aromatic Hydrocarb	on Fractions						
Aromatic >C5-C7		0.0500	ppmv	<0.0500	<0.0500	<0.0500	
Aromatic >C7-C8	TPHCWG-ARV2	0.0500	ppmv	<0.0500	<0.0500	0.0580	
Aromatic >C8-C10	TPHCWG-ARV3	0.250	ppmv	<0.250	<0.250	<0.250	
Aromatic >C10-C12	TPHCWG-ARE1	0.500	ppmv	<0.500	<0.500	<0.500	
P103-S: TPH CWG Aromatic Hydrocarb	on Fractions (Ca	alc Conc)			1 1		

Page : 10 of 11 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd Project : 23.0722 Cammeray PS DSI

Sub-Matrix: SOIL GAS (Matrix: AIR)			Sample ID	SV03 C14249_S211	SV02 C996_S310	SV01 C1238_S027	
		Sampli	ng date / time	02-May-2024 10:00	02-May-2024 10:15	02-May-2024 10:30	
Compound	CAS Number	LOR	Unit	EN2404013-001	EN2404013-002	EN2404013-003	
				Result	Result	Result	
EP103-S: TPH CWG Aromatic Hydroca	arbon Fractions (Ca	alc Conc)	- Continued				
Aromatic >C5-C7		0.160	mg/m³	<0.160	<0.160	<0.160	
Aromatic >C7-C8	TPHCWG-ARV2	0.190	mg/m³	<0.190	<0.190	0.218	
Aromatic >C8-C10	TPHCWG-ARV3	1.25	mg/m³	<1.25	<1.25	<1.25	
Aromatic >C10-C12	TPHCWG-ARE1	2.50	mg/m³	<2.50	<2.50	<2.50	
Sampling Quality Assurance							
Pressure - As received	PRESSURE	0.1	kPaa	93.7	70.4	67.9	
Pressure - Laboratory Atmosphere		0.1	kPaa	100	100	100	
Temperature as Received		0.1	°C	21.0	21.0	21.0	
Vacuum - As received		0.03	Inches Hg	2.01	8.89	9.66	
USEPA Air Toxics Method TO15r Surr	ogates						
4-Bromofluorobenzene	460-00-4	0.5	%	91.1	91.5	90.7	

Page : 11 of 11 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd Project : 23.0722 Cammeray PS DSI

Surrogate Control Limits

Sub-Matrix: SOIL GAS	Recovery Limits (%)			
Compound	CAS Number	Low	High	
USEPA Air Toxics Method TO15r Surrogates				
4-Bromofluorobenzene	460-00-4	60	140	

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EN2404013** Page : 1 of 5

Client : ADE Consulting Group Pty Ltd Laboratory : Environmental Division Newcastle

 Contact
 : Karin Azzam
 Telephone
 : +61 2 4014 2500

 Project
 : 23.0722 Cammeray PS DSI
 Date Samples Received
 : 06-May-2024

 Site
 : -- Issue Date
 : 14-May-2024

Sampler : Karin Azzam, SAM GOLDSMITH No. of samples received : 3

Order number : 23.0722 No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Matrix Spike outliers occur.
- Laboratory Control outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd
Project : 23.0722 Cammeray PS DSI

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: AIR

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EP101: VOCs by USEPA Method TO15r	QC-5778290-002		Bromoform	75-25-2	69.4 %	70.0-130%	Recovery less than lower control limit

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: AIR

Evaluation: **×** = Holding time breach ; ✓ = Within holding time.

Matrix: AIR					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP101: VOCs by USEPA Method TO15r								
Gas Canister - ALS Stainless Steel Silonite (EP101-15X) SV03 - C14249_S211		02-May-2024				12-May-2024	01-Jun-2024	✓
Gas Canister - ALS Stainless Steel Silonite (EP101-15X) SV02 - C996_S310,	SV01 - C1238_S027	02-May-2024				13-May-2024	01-Jun-2024	✓
EP103: Petroleum Hydrocarbons in Gaseous Samples								
Gas Canister - ALS Stainless Steel Silonite (EP103-PC) SV03 - C14249_S211		02-May-2024				12-May-2024	01-Jun-2024	✓
Gas Canister - ALS Stainless Steel Silonite (EP103-PC) SV02 - C996_S310,	SV01 - C1238_S027	02-May-2024				13-May-2024	01-Jun-2024	✓
EP103: Total Recoverable Hydrocarbons - NEPM 2013								
Gas Canister - ALS Stainless Steel Silonite (EP103-PC) SV03 - C14249_S211		02-May-2024				12-May-2024	01-Jun-2024	✓
Gas Canister - ALS Stainless Steel Silonite (EP103-PC) SV02 - C996_S310,	SV01 - C1238_S027	02-May-2024				13-May-2024	01-Jun-2024	√
EP103-S: CRCCARE PVI Aliphatic Hydrocarbon Fraction	is .							
Gas Canister - ALS Stainless Steel Silonite (EP103-S) SV03 - C14249_S211		02-May-2024				12-May-2024	01-Jun-2024	✓
Gas Canister - ALS Stainless Steel Silonite (EP103-S) SV02 - C996_S310,	SV01 - C1238_S027	02-May-2024				13-May-2024	01-Jun-2024	√
EP103-S: CRCCARE PVI Aromatic Hydrocarbon Fraction	ns .							
Gas Canister - ALS Stainless Steel Silonite (EP103-S) SV03 - C14249_S211		02-May-2024				12-May-2024	01-Jun-2024	✓
Gas Canister - ALS Stainless Steel Silonite (EP103-S) SV02 - C996 S310,	SV01 - C1238 S027	02-May-2024				13-May-2024	01-Jun-2024	1

Page : 3 of 5 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd Project : 23.0722 Cammeray PS DSI

Matrix: AIR Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method			Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP103-S: TPH CWG Aliphatic Hydrocarbon Fractions									
Gas Canister - ALS Stainless Steel Silonite (EP103-S) SV03 - C14249_S211		02-May-2024				12-May-2024	01-Jun-2024	✓	
Gas Canister - ALS Stainless Steel Silonite (EP103-S) SV02 - C996_S310,	SV01 - C1238_S027	02-May-2024				13-May-2024	01-Jun-2024	✓	
EP103-S: TPH CWG Aromatic Hydrocarbon Fractions									
Gas Canister - ALS Stainless Steel Silonite (EP103-S) SV03 - C14249_S211		02-May-2024				12-May-2024	01-Jun-2024	√	
Gas Canister - ALS Stainless Steel Silonite (EP103-S) SV02 - C996_S310,	SV01 - C1238_S027	02-May-2024				13-May-2024	01-Jun-2024	✓	
Sampling Quality Assurance									
Gas Canister - ALS Stainless Steel Silonite (CAN-001) SV03 - C14249_S211, SV01 - C1238_S027	SV02 - C996_S310,	02-May-2024				06-May-2024	02-May-2025	✓	

Page : 4 of 5 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd
Project : 23.0722 Cammeray PS DSI

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: AIR

Evaluation: x = Quality Control frequency not within specification: \checkmark = Quality Control frequency within specification.

Matrix: AIR				Evaluatio	n: 🗴 = Quality Co	ontrol frequency i	not within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Duplicate Control Samples (DCS)							
Aliphatic and Aromatic Hydrocarbons in Gaseous	EP103-S	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Samples							
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile TPH/TRH in Gaseous Samples	EP103-PC	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Duplicates (DUP)							
Aliphatic and Aromatic Hydrocarbons in Gaseous	EP103-S	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Samples							
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile TPH/TRH in Gaseous Samples	EP103-PC	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Aliphatic and Aromatic Hydrocarbons in Gaseous	EP103-S	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Samples							
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile TPH/TRH in Gaseous Samples	EP103-PC	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Aliphatic and Aromatic Hydrocarbons in Gaseous	EP103-S	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Samples							
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile TPH/TRH in Gaseous Samples	EP103-PC	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 5 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd
Project : 23.0722 Cammeray PS DSI

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Canister Sampling - Field Data	CAN-001	AIR	In house: Referenced to USEPA TO14 / TO15
VOCs in Air by USEPA TO15r - Extended	EP101-15X	AIR	In house: Referenced to USEPA TO15r Volatile Organic Compounds in Air by USEPA TO15. Extended Suite
Suite			
VOCs in Air by USEPA TO15r - Extended	EP101-15X-MV	AIR	USEPA TO15r VOCs in Air
Suite (mass/volume)			Results recalculated as mass/volume concentrations from volume/volume concentrations at a given
			temperature and pressure.
Volatile TPH/TRH in Gaseous Samples	EP103-PC	AIR	Volatile TPH/TRH by GC-MS with Preconcentration and Thermal Desorption Injection Based on USEPA TO15,
			MassDEP APH and TPH/NEPM Schedule B(3) Fractions
Volatile TPH/TRH in Gaseous Samples	EP103-PC-MV	AIR	USEPA TO15r, CRCCARE, MassDEP APH
(Calc Conc)			Results recalculated as mass/volume concentrations from volume/volume concentrations at a given
			temperature, pressure and mid-range molecular weights.
Aliphatic and Aromatic Hydrocarbons in	EP103-S	AIR	Aliphatic and Aromatic Hydrocarbons in Gaseous Samples by GC-MS with Preconcentration and Thermal
Gaseous Samples			Desorption Injection Based on USEPA TO15, MassDEP APH, TPHCWG and CRCCARE PVI Technical Report
			23, 2013
Aliphatic and Aromatic Hydrocarbons in	EP103-S-MV	AIR	USEPA TO15r, TPHCWG, MassDEP APH
Gas Samples (Calc)			Results recalculated as mass/volume concentrations from volume/volume concentrations at a given
			temperature, pressure and molecular weights (incl. TPHCWG Vol3 Table 8).

QUALITY CONTROL REPORT

Work Order : **EN2404013** Page : 1 of 9

Client : ADE Consulting Group Pty Ltd Laboratory : Environmental Division Newcastle

Contact ; Karin Azzam Contact ;

Address : 6/7 MILLENIUM COURT Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

SILVERWATER NSW 2128

 Telephone
 : --- Telephone
 : +61 2 4014 2500

 Project
 : 23.0722 Cammeray PS DSI
 Date Samples Received
 : 06-May-2024

Project : 23.0722 Cammeray PS DSI Date Samples Received : 06-May-2024
Order number : 23.0722 Date Analysis Commenced : 06-May-2024

C-O-C number : 14-May-2024

Sampler : Karin Azzam, SAM GOLDSMITH

Site : ---Quote number : EN/111

No. of samples received : 3
No. of samples analysed : 3

Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

 Signatories
 Position
 Accreditation Category

 Dale Semple
 Analyst
 Newcastle, Mayfield West, NSW

 Daniel Junek
 Senior Organic Chemist
 Newcastle - Organics, Mayfield West, NSW

Page : 2 of 9 Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd
Project : 23.0722 Cammeray PS DSI

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

* = The final LOR has been raised due to dilution or other sample specific cause; adjusted LOR is shown in brackets. The duplicate ranges for Acceptable RPD% are applied to the final LOR where applicable

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: AIR				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EP101: VOCs by US	EPA Method TO15r (QC	Lot: 5778290)									
EN2404013-001	SV03 C14249_S211	EP101-15X: Freon 12	75-71-8	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: Chloromethane	74-87-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: Freon 114	76-14-2	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: Vinyl chloride	75-01-4	0.5 (2.0)*	ppbv	<0.0020 ppmv	<2.0	0.0	No Limit		
		EP101-15X: Bromomethane	74-83-9	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: Chloroethane	75-00-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: Freon 11	75-69-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: 1.1-Dichloroethene	75-35-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: Dichloromethane	75-09-2	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: Freon 113	76-13-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: 1.1-Dichloroethane	75-34-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: cis-1.2-Dichloroethene	156-59-2	0.5 (5.0)*	ppbv	<0.0050 ppmv	<5.0	0.0	No Limit		
		EP101-15X: Chloroform	67-66-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: 1.2-Dichloroethane	107-06-2	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: 1.1.1-Trichloroethane	71-55-6	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: Benzene	71-43-2	0.5 (30.0)*	ppbv	<0.0300 ppmv	<30.0	0.0	No Limit		
		EP101-15X: Carbon Tetrachloride	56-23-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: 1.2-Dichloropropane	78-87-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: Trichloroethene	79-01-6	0.5 (1.0)*	ppbv	<0.0010 ppmv	<1.0	0.0	No Limit		
		EP101-15X: cis-1.3-Dichloropropylene	10061-01-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		
		EP101-15X: trans-1.3-Dichloropropene	10061-02-6	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit		

Page : 3 of 9
Work Order : EN2404013

Sub-Matrix: AIR						Laboratory D	Ouplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP101: VOCs by USE	PA Method TO15r (QC Lo	ot: 5778290) - continued							
EN2404013-001	SV03 C14249_S211	EP101-15X: 1.1.2-Trichloroethane	79-00-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Toluene	108-88-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.2-Dibromoethane (EDB)	106-93-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Tetrachloroethene	127-18-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Chlorobenzene	108-90-7	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Ethylbenzene	100-41-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Styrene	100-42-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.1.2.2-Tetrachloroethane	79-34-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: ortho-Xylene	95-47-6	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 4-Ethyltoluene	622-96-8	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.3.5-Trimethylbenzene	108-67-8	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.2.4-Trimethylbenzene	95-63-6	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.3-Dichlorobenzene	541-73-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Benzylchloride	100-44-7	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.4-Dichlorobenzene	106-46-7	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.2-Dichlorobenzene	95-50-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.2.4-Trichlorobenzene	120-82-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Hexachlorobutadiene	87-68-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Acetone	67-64-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Bromodichloromethane	75-27-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.3-Butadiene	106-99-0	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Carbon disulfide	75-15-0	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 2-Chlorotoluene	95-49-8	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1-Chloro-2-propene (Allyl chloride)	107-05-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Cyclohexane	110-82-7	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Dibromochloromethane	124-48-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.4-Dioxane	123-91-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Ethylacetate	9002-89-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: trans-1.2-Dichloroethene	156-60-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Heptane	142-82-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Hexane	110-54-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Isooctane	540-84-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Isopropyl Alcohol	67-63-0	, ,	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 2-Butanone (MEK)	78-93-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Methyl iso-Butyl ketone	108-10-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 2-Hexanone (MBK)	591-78-6	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Propene	115-07-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit

Page : 4 of 9
Work Order : EN2404013

Sub-Matrix: AIR						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP101: VOCs by US	EPA Method TO15r (QC	Lot: 5778290) - continued							
EN2404013-001	SV03 C14249_S211	EP101-15X: Tetrahydrofuran	109-99-9	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Bromoform	75-25-2	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Vinyl Acetate	108-05-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Vinyl bromide	593-60-2	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Naphthalene	91-20-3	0.5 (19.0)*	ppbv	<0.0190 ppmv	<19.0	0.0	No Limit
		EP101-15X: meta- & para-Xylene	108-38-3	1 (100)*	ppbv	<0.100 ppmv	<100	0.0	No Limit
			106-42-3						
EN2404022-001	Anonymous	EP101-15X: Freon 12	75-71-8	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Chloromethane	74-87-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Freon 114	76-14-2	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Vinyl chloride	75-01-4	0.5 (2.0)*	ppbv	<0.0020 ppmv	<2.0	0.0	No Limit
		EP101-15X: Bromomethane	74-83-9	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Chloroethane	75-00-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Freon 11	75-69-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.1-Dichloroethene	75-35-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Dichloromethane	75-09-2	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Freon 113	76-13-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.1-Dichloroethane	75-34-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: cis-1.2-Dichloroethene	156-59-2	0.5 (5.0)*	ppbv	<0.0050 ppmv	<5.0	0.0	No Limit
		EP101-15X: Chloroform	67-66-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.2-Dichloroethane	107-06-2	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.1.1-Trichloroethane	71-55-6	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Benzene	71-43-2	0.5 (30.0)*	ppbv	<0.0300 ppmv	<30.0	0.0	No Limit
		EP101-15X: Carbon Tetrachloride	56-23-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.2-Dichloropropane	78-87-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Trichloroethene	79-01-6	0.5 (1.0)*	ppbv	<0.0010 ppmv	<1.0	0.0	No Limit
		EP101-15X: cis-1.3-Dichloropropylene	10061-01-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: trans-1.3-Dichloropropene	10061-02-6	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.1.2-Trichloroethane	79-00-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Toluene	108-88-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.2-Dibromoethane (EDB)	106-93-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Tetrachloroethene	127-18-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Chlorobenzene	108-90-7	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Ethylbenzene	100-41-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Styrene	100-42-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.1.2.2-Tetrachloroethane	79-34-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: ortho-Xylene	95-47-6	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 4-Ethyltoluene	622-96-8	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit

Page : 5 of 9
Work Order : EN2404013

Sub-Matrix: AIR						Laboratory L	Duplicate (DUP) Repor	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP101: VOCs by US	EPA Method TO15r (QC L	ot: 5778290) - continued							
EN2404022-001	Anonymous	EP101-15X: 1.3.5-Trimethylbenzene	108-67-8	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.2.4-Trimethylbenzene	95-63-6	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.3-Dichlorobenzene	541-73-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Benzylchloride	100-44-7	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.4-Dichlorobenzene	106-46-7	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.2-Dichlorobenzene	95-50-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.2.4-Trichlorobenzene	120-82-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Hexachlorobutadiene	87-68-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Acetone	67-64-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Bromodichloromethane	75-27-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.3-Butadiene	106-99-0	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Carbon disulfide	75-15-0	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 2-Chlorotoluene	95-49-8	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1-Chloro-2-propene (Allyl chloride)	107-05-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Cyclohexane	110-82-7	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Dibromochloromethane	124-48-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 1.4-Dioxane	123-91-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Ethylacetate	9002-89-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: trans-1.2-Dichloroethene	156-60-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Heptane	142-82-5	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Hexane	110-54-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Isooctane	540-84-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Isopropyl Alcohol	67-63-0	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 2-Butanone (MEK)	78-93-3	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Methyl iso-Butyl ketone	108-10-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: 2-Hexanone (MBK)	591-78-6	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Propene	115-07-1	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Tetrahydrofuran	109-99-9	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Bromoform	75-25-2	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Vinyl Acetate	108-05-4	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Vinyl bromide	593-60-2	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP101-15X: Naphthalene	91-20-3	0.5 (19.0)*	ppbv	<0.0190 ppmv	<19.0	0.0	No Limit
		EP101-15X: meta- & para-Xylene	108-38-3 106-42-3	1 (100)*	ppbv	<0.100 ppmv	<100	0.0	No Limit
EP103: Petroleum Hy	drocarbons in Gaseous S	Samples (QC Lot: 5778297)							
EN2404013-001	SV03 C14249_S211	EP103-PC: C6 - C9 Fraction		50 (5000)*	ppbv	<5.00 ppmv	<5000	0.0	No Limit
		EP103-PC: C10 - C14 Fraction		50 (5000)*	ppbv	<5.00 ppmv	<5000	0.0	No Limit

Page : 6 of 9 Work Order : EN2404013

Sub-Matrix: AIR						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP103: Petroleum F	lydrocarbons in Gaseous	Samples (QC Lot: 5778297) - continued							
EN2404022-001	Anonymous	EP103-PC: C6 - C9 Fraction		50 (5000)*	ppbv	<5.00 ppmv	<5000	0.0	No Limit
		EP103-PC: C10 - C14 Fraction		50 (5000)*	ppbv	<5.00 ppmv	<5000	0.0	No Limit
EP103: Total Recov	erable Hydrocarbons - NE	PM 2013 (QC Lot: 5778297)							
EN2404013-001	SV03 C14249_S211	EP103-PC: C6 - C10 Fraction	C6_C10	50 (5000)*	ppbv	<5.00 ppmv	<5000	0.0	No Limit
		EP103-PC: >C10 - C16 Fraction		50 (5000)*	ppbv	<5.00 ppmv	<5000	0.0	No Limit
EN2404022-001	Anonymous	EP103-PC: C6 - C10 Fraction	C6_C10	50 (5000)*	ppbv	<5.00 ppmv	<5000	0.0	No Limit
		EP103-PC: >C10 - C16 Fraction		50 (5000)*	ppbv	<5.00 ppmv	<5000	0.0	No Limit
EP103-S: CRCCARE	E PVI Aliphatic Hydrocarbo	on Fractions (QC Lot: 5778299)							
EN2404013-001	SV03 C14249_S211	EP103-S: Aliphatic C6-C10		50 (5000)*	ppbv	<5.00 ppmv	<5000	0.0	No Limit
		EP103-S: Aliphatic > C10-C16		50 (5000)*	ppbv	<5.00 ppmv	<5000	0.0	No Limit
EP103-S: CRCCARE	E PVI Aromatic Hydrocarbo	on Fractions (QC Lot: 5778299)							
EN2404013-001	SV03 C14249_S211	EP103-S: Aromatics >C10-C16 minus		1.5 (150)*	ppbv	<0.150 ppmv	<150	0.0	No Limit
		Naphthalene (F2 Aromatic)							
		EP103-S: Aromatic > C10-C16		2 (200)*	ppbv	<0.200 ppmv	<200	0.0	No Limit
		EP103-S: Aromatics C6-C10 minus BTEX (F1		4 (400)*	ppbv	<0.400 ppmv	<400	0.0	No Limit
		Aromatic)		7 (700)*	ppbv	<0.700 ppmv	<700	0.0	No Limit
ED400 O TOU OWO	All about a Hardan and an Eu	EP103-S: Aromatics C6-C10		7 (700)	ppov	<0.700 ppiliv	<700	0.0	NO LITTIL
		actions (QC Lot: 5778299)		F0 (F000)*	mmh	4F 00 mmm.	4 5000	0.0	No Limit
EN2404013-001	SV03 C14249_S211	EP103-S: Aliphatic >C5-C6		50 (5000)*	ppbv	<5.00 ppmv	<5000	0.0	No Limit No Limit
		EP103-S: Aliphatic >C6-C8	TPHCWG-ALV2 TPHCWG-ALV3	50 (5000)* 50 (5000)*	ppbv	<5.00 ppmv	<5000 <5000	0.0	No Limit No Limit
		EP103-S: Aliphatic >C8-C10	TPHCWG-ALV3	50 (5000)*	ppbv	<5.00 ppmv	<5000	0.0	No Limit
		EP103-S: Aliphatic >C10-C12	TPHCWG-ALET	50 (5000)	ppbv	<5.00 ppmv	<5000	0.0	NO LIMIL
	<u> </u>	ractions (QC Lot: 5778299)		0.5 (50.0)*		10.0500	.50.0	0.0	Mar Linett
EN2404013-001	SV03 C14249_S211	EP103-S: Aromatic >C5-C7		0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP103-S: Aromatic >C7-C8	TPHCWG-ARV	0.5 (50.0)*	ppbv	<0.0500 ppmv	<50.0	0.0	No Limit
		EP103-S: Aromatic >C8-C10	TPHCWG-ARV	2.5 (250)*	ppbv	<0.250 ppmv	<250	0.0	No Limit
		El 100 O. Alollidilo 200-010	3	()	PP~.	5.255 pp.114		0.0	
		EP103-S: Aromatic >C10-C12	TPHCWG-ARE1	5 (500)*	ppbv	<0.500 ppmv	<500	0.0	No Limit

Page : 7 of 9
Work Order : EN2404013

Client : ADE Consulting Group Pty Ltd
Project : 23.0722 Cammeray PS DSI

Method Blank (MB), Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (DCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control terms Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (DCS) refers to certified reference materials, or known interference free matrices spiked with target analytes. The purpose of these QC parameters are to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS and DCS.

Sub-Matrix: AIR	[Method Blank (ME	3) Report		Laboratory Control S	Spike (LCS) and Labora	atory Control S	pike Duplicat	e (DCS) Report	
					Spike	Spike Red	covery (%)	Recovery	Recovery Limits (%)		Os (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP101: VOCs by USEPA Method TO15r(C	QCLot: 5778290)										
EP101-15X: Freon 12	75-71-8	0.5	ppbv	<0.5	10 ppbv	110	110	88.1	117	0.0	
EP101-15X: Chloromethane	74-87-3	0.5	ppbv	<0.5	10 ppbv	104	103	70.5	130	1.0	
EP101-15X: Freon 114	76-14-2	0.5	ppbv	<0.5	10 ppbv	112	112	88.2	118	0.0	
EP101-15X: Vinyl chloride	75-01-4	0.5	ppbv	<0.5	10 ppbv	113	113	82.0	120	0.0	
EP101-15X: Bromomethane	74-83-9	0.5	ppbv	<0.5	10 ppbv	112	112	87.9	116	0.0	
EP101-15X: Chloroethane	75-00-3	0.5	ppbv	<0.5	10 ppbv	113	112	84.2	118	0.9	
EP101-15X: Freon 11	75-69-4	0.5	ppbv	<0.5	10 ppbv	108	108	87.1	117	0.0	
EP101-15X: 1.1-Dichloroethene	75-35-4	0.5	ppbv	<0.5	10 ppbv	108	109	87.1	115	0.9	
EP101-15X: Dichloromethane	75-09-2	0.5	ppbv	<0.5	10 ppbv	106	105	70.0	129	0.9	
EP101-15X: Freon 113	76-13-1	0.5	ppbv	<0.5	10 ppbv	100	101	83.8	121	1.0	
EP101-15X: 1.1-Dichloroethane	75-34-3	0.5	ppbv	<0.5	10 ppbv	112	112	85.1	116	0.0	
EP101-15X: cis-1.2-Dichloroethene	156-59-2	0.5	ppbv	<0.5	10 ppbv	108	108	83.7	119	0.0	
EP101-15X: Chloroform	67-66-3	0.5	ppbv	<0.5	10 ppbv	109	109	87.3	113	0.0	
EP101-15X: 1.2-Dichloroethane	107-06-2	0.5	ppbv	<0.5	10 ppbv	110	109	81.7	117	0.9	
EP101-15X: 1.1.1-Trichloroethane	71-55-6	0.5	ppbv	<0.5	10 ppbv	101	102	82.8	116	1.0	
EP101-15X: Benzene	71-43-2	0.5	ppbv	<0.5	10 ppbv	108	108	83.3	114	0.0	
EP101-15X: Carbon Tetrachloride	56-23-5	0.5	ppbv	<0.5	10 ppbv	94.1	96.4	82.7	120	2.4	
EP101-15X: 1.2-Dichloropropane	78-87-5	0.5	ppbv	<0.5	10 ppbv	106	107	83.3	113	0.9	
EP101-15X: Trichloroethene	79-01-6	0.5	ppbv	<0.5	10 ppbv	99.4	99.4	85.1	113	0.0	
EP101-15X: cis-1.3-Dichloropropylene	10061-01-5	0.5	ppbv	<0.5	10 ppbv	100	101	84.0	116	1.0	
EP101-15X: trans-1.3-Dichloropropene	10061-02-6	0.5	ppbv	<0.5	10 ppbv	89.1	91.2	75.3	121	2.3	
EP101-15X: 1.1.2-Trichloroethane	79-00-5	0.5	ppbv	<0.5	10 ppbv	102	103	87.5	116	1.0	
EP101-15X: Toluene	108-88-3	0.5	ppbv	<0.5	10 ppbv	103	103	81.8	120	0.0	
EP101-15X: 1.2-Dibromoethane (EDB)	106-93-4	0.5	ppbv	<0.5	10 ppbv	97.4	98.6	84.0	119	1.2	
EP101-15X: Tetrachloroethene	127-18-4	0.5	ppbv	<0.5	10 ppbv	88.7	89.1	75.7	126	0.4	
EP101-15X: Chlorobenzene	108-90-7	0.5	ppbv	<0.5	10 ppbv	98.8	98.8	84.8	118	0.0	
EP101-15X: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	10 ppbv	102	103	82.8	116	1.0	
EP101-15X: meta- & para-Xylene	108-38-3	1	ppbv	<1.0	20 ppbv	102	103	84.3	118	1.0	
	106-42-3										
EP101-15X: Styrene	100-42-5	0.5	ppbv	<0.5	10 ppbv	103	103	74.6	125	0.0	
EP101-15X: 1.1.2.2-Tetrachloroethane	79-34-5	0.5	ppbv	<0.5	10 ppbv	104	105	86.9	120	1.0	
EP101-15X: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	10 ppbv	103	104	84.9	120	1.0	
EP101-15X: 4-Ethyltoluene	622-96-8	0.5	ppbv	<0.5	10 ppbv	101	102	78.2	125	1.0	

Page : 8 of 9
Work Order : EN2404013

Sub-Matrix: AIR			Method Blank (M	B) Report		Laboratory Control S	Spike (LCS) and Labora	tory Control S	Spike Duplica	te (DCS) Report	
					Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPD)s (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP101: VOCs by USEPA Method TO15r (QCL	ot: 5778290) - co	ontinued									
EP101-15X: 1.3.5-Trimethylbenzene	108-67-8	0.5	ppbv	<0.5	10 ppbv	102	102	83.3	126	0.0	
EP101-15X: 1.2.4-Trimethylbenzene	95-63-6	0.5	ppbv	<0.5	10 ppbv	101	101	82.1	125	0.0	
EP101-15X: 1.3-Dichlorobenzene	541-73-1	0.5	ppbv	<0.5	10 ppbv	89.3	90.6	78.5	124	1.4	
EP101-15X: Benzylchloride	100-44-7	0.5	ppbv	<0.5	10 ppbv	76.1	78.5	70.0	122	3.1	
EP101-15X: 1.4-Dichlorobenzene	106-46-7	0.5	ppbv	<0.5	10 ppbv	91.1	91.5	79.0	124	0.4	
EP101-15X: 1.2-Dichlorobenzene	95-50-1	0.5	ppbv	<0.5	10 ppbv	91.9	92.6	80.0	125	0.8	
EP101-15X: 1.2.4-Trichlorobenzene	120-82-1	0.5	ppbv	<0.5	10 ppbv	77.6	78.8	70.0	120	1.5	
EP101-15X: Hexachlorobutadiene	87-68-3	0.5	ppbv	<0.5	10 ppbv	82.1	82.1	70.0	130	0.0	
EP101-15X: Acetone	67-64-1	0.5	ppbv	<0.5	10 ppbv	106	106	70.0	130	0.0	
EP101-15X: Bromodichloromethane	75-27-4	0.5	ppbv	<0.5	10 ppbv	108	109	82.3	117	0.9	
EP101-15X: 1.3-Butadiene	106-99-0	0.5	ppbv	<0.5	10 ppbv	115	114	74.0	126	0.9	
EP101-15X: Carbon disulfide	75-15-0	0.5	ppbv	<0.5	10 ppbv	109	110	85.0	115	0.9	
EP101-15X: 2-Chlorotoluene	95-49-8	0.5	ppbv	<0.5	10 ppbv	97.4	97.8	79.1	128	0.4	
EP101-15X: 1-Chloro-2-propene (Allyl chloride)	107-05-1	0.5	ppbv	<0.5	10 ppbv	107	107	74.3	122	0.0	
EP101-15X: Cyclohexane	110-82-7	0.5	ppbv	<0.5	10 ppbv	108	109	82.2	113	0.9	
EP101-15X: Dibromochloromethane	124-48-1	0.5	ppbv	<0.5	10 ppbv	95.9	97.8	78.4	129	2.0	
EP101-15X: 1.4-Dioxane	123-91-1	0.5	ppbv	<0.5	10 ppbv	100	99.9	70.0	130	0.1	
EP101-15X: Ethylacetate	9002-89-5	0.5	ppbv	<0.5	10 ppbv	93.0	94.1	70.0	122	1.2	
EP101-15X: trans-1.2-Dichloroethene	156-60-5	0.5	ppbv	<0.5	10 ppbv	111	111	82.9	115	0.0	
EP101-15X: Heptane	142-82-5	0.5	ppbv	<0.5	10 ppbv	109	110	80.1	117	0.9	
EP101-15X: Hexane	110-54-3	0.5	ppbv	<0.5	10 ppbv	112	112	76.8	123	0.0	
EP101-15X: Isooctane	540-84-1	0.5	ppbv	<0.5	10 ppbv	111	111	77.6	120	0.0	
EP101-15X: Isopropyl Alcohol	67-63-0	0.5	ppbv	<0.5	10 ppbv	73.5	74.9	70.0	128	1.9	
EP101-15X: 2-Butanone (MEK)	78-93-3	0.5	ppbv	<0.5	10 ppbv	107	107	70.0	123	0.0	
EP101-15X: Methyl iso-Butyl ketone	108-10-1	0.5	ppbv	<0.5	10 ppbv	101	102	70.0	126	1.0	
EP101-15X: 2-Hexanone (MBK)	591-78-6	0.5	ppbv	<0.5	10 ppbv	92.6	93.4	70.0	130	0.9	
EP101-15X: Propene	115-07-1	0.5	ppbv	<0.5	10 ppbv	110	115	70.0	130	4.4	
EP101-15X: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	ppbv	<0.5	10 ppbv	103	104	74.7	125	1.0	
EP101-15X: Tetrahydrofuran	109-99-9	0.5	ppbv	<0.5	10 ppbv	113	112	70.0	130	0.9	
EP101-15X: Bromoform	75-25-2	0.5	ppbv	<0.5	10 ppbv	# 69.4	71.9	70.0	130	3.5	
EP101-15X: Vinyl Acetate	108-05-4	0.5	ppbv	<0.5	10 ppbv	73.4	74.6	70.0	128	1.6	
EP101-15X: Vinyl bromide	593-60-2	0.5	ppbv	<0.5	10 ppbv	108	108	83.8	116	0.0	
EP101-15X: Naphthalene	91-20-3	0.5	ppbv	<0.5	8.16 ppbv	74.8	76.6	70.0	125	2.4	
EP103: Petroleum Hydrocarbons in Gaseous	Samples (QCLo	t: 577829 <u>7)</u>									
EP103-PC: C6 - C9 Fraction		50	ppbv	<50	2700 ppbv	104	105	75.3	124	1.0	25
EP103-PC: C10 - C14 Fraction		50	ppbv	<50	1200 ppbv	92.4	93.0	80.8	126	0.6	25
EP103: Total Recoverable Hydrocarbons - NE	PM 2013 (QCLo	t: 577 <u>8297)</u>									
EP103-PC: C6 - C10 Fraction	C6_C10	50	ppbv	<50	2900 ppbv	101	102	77.5	124	1.0	25
EP103-PC: >C10 - C16 Fraction		50	ppbv	<50	500 ppbv	88.4	88.8	79.3	131	0.5	25
			• • •	1			1				

Page : 9 of 9 Work Order : EN2404013

Sub-Matrix: AIR			Method Blank (ME	3) Report		Laboratory Control S	pike (LCS) and Laborat	ory Control S	Spike Duplica	te (DCS) Report	
					Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPD	s (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP103-S: CRCCARE PVI Aliphatic Hydrocai	bon Fractions (Q	CLot: 5778	299)								
EP103-S: Aliphatic C6-C10		50	ppbv	<50							
EP103-S: Aliphatic > C10-C16		50	ppbv	<50							
EP103-S: CRCCARE PVI Aromatic Hydroca	rbon Fractions (Q	CLot: 5778	299)								
EP103-S: Aromatics C6-C10		7	ppbv	<7.0							
EP103-S: Aromatics C6-C10 minus BTEX (F1 Aromatic)		4	ppbv	<4							
EP103-S: Aromatic > C10-C16		2	ppbv	<2							
EP103-S: Aromatics >C10-C16 minus Naphthalene (F2 Aromatic)		1.5	ppbv	<2							
EP103-S: TPH CWG Aliphatic Hydrocarbon	Fractions (QCLot	: 5778299)									
EP103-S: Aliphatic >C5-C6		50	ppbv	<50	1000 ppbv	105	105	73.2	125	0.0	25
EP103-S: Aliphatic >C6-C8	TPHCWG-AL V2	50	ppbv	<50	1300 ppbv	102	103	76.0	120	1.0	25
EP103-S: Aliphatic >C8-C10	TPHCWG-AL V3	50	ppbv	<50	200 ppbv	77.0	77.4	54.7	124	0.5	25
EP103-S: Aliphatic >C10-C12	TPHCWG-AL E1	50	ppbv	<50	200 ppbv	77.5	77.7	70.0	128	0.3	25
EP103-S: TPH CWG Aromatic Hydrocarbon	Fractions (QCLot	: 5778299)									
EP103-S: Aromatic >C5-C7		0.5	ppbv	<0.5	100 ppbv	98.2	99.5	83.3	116	1.3	25
EP103-S: Aromatic >C7-C8	TPHCWG-AR V2	0.5	ppbv	<0.5	100 ppbv	98.9	99.7	87.3	114	0.8	25
EP103-S: Aromatic >C8-C10	TPHCWG-AR V3	2.5	ppbv	<2.5	1100 ppbv	98.8	99.7	84.7	122	0.9	25
EP103-S: Aromatic >C10-C12	TPHCWG-AR E1	5	ppbv	<5	300 ppbv	98.6	99.2	83.4	128	0.6	25

[•] No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

Appendix H: Data Quality Evaluation

Background

To evaluate a dataset generated by an environmental investigation or assessment, the data quality indicators need to be defined to ensure that the data are of sufficient quantity and quality for the purpose of making a decision. ASC NEPM (2013) identifies five measures to be considered when reviewing the quality assurance and quality control from an investigation or assessment as below:

- Precision: A quantitative measure of the variability or reproducibility of data.
- Accuracy (bias): A quantitative measure of the closeness of reported data to the true value.
- Representativeness: The confidence (expressed qualitatively) that data is representative of each medium present at the site.
- Comparability: The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event.
- Completeness: A measure of the amount of useable data (expressed as %) from a data collection activity.

The above five measures are known collectively by the acronym 'PARCC' and are comprised of both field and laboratory QA and QC processes to ensure that a resultant data set is suitable for making a decision.

The quantitative requirements have been outlined in the following sub-section, while the detailed review of the field and laboratory QA and QC is provided in the subsequent sub-sections.

Data Quality Indicators

The DGIs to demonstrate the PARC acceptance criteria were summarised in Table H1 below.

Table H1: Data Quality Indicators

Data Quality Indicator	Frequency	Data Quality Criteria
Blind replicate (intra-laboratory)	1:20 or 5%	< 50% RPD
Split replicate (inter-laboratory)	1:20 or 5%	< 50% RPD
Trip Blank	1 per laboratory batch	< LOR
Trip Spike	1 per laboratory batch	70 – 130% recovery
Equipment rinsate blanks	N/A	N/A
Field blanks	N/A	N/A
Laboratory surrogate spikes	10% or laboratory discretion	50 – 150% recovery
Laboratory matrix spikes	10% or laboratory discretion	70 – 130% recovery
Laboratory control spikes	10% or laboratory discretion	70 – 130% recovery
		Results <10 times the PQL: No Limit
Laboratory duplicates (internal)	10% or laboratory discretion	Results between 10-20 times the PQL: RPD must lie between 0-50%
		Results >20 times the PQL: RPD must lie between 0-30%
Method blanks	Results between 10-20 times the PQL: RPD must lie between 0-50%	<lor< th=""></lor<>

Field Data Evaluation

Field Staff

ADE provided suitably experienced and qualified environmental consultants to oversee the investigations completed at the site.

Investigation and Sampling Methods

This targeted DSI is required for due diligence purposes to investigate the contamination risk status from current and historical use, prior to the proposed construction of a new building to accommodate new general learning spaces.

A review of available historical information and previous environmental investigations have inferred that the site has a low potential for contamination resulting from past and present land uses. Potential sources of contamination were identified to include; the potential for uncontrolled fill to exist on site, migration of contaminants from offsite sources.

An environmental investigation was therefore undertaken to assess soil conditions within the site. The following data collected was then used to evaluate and characterise the soil condition across the site to inform the need for remediation and further management (if required).

A total of 15 soil samples were collected from 10 locations (5 boreholes and 5 test pits) for analysis of CoPC. Three soil vapour bores were installed and soil vapour sampled from the three bores.

Soil samples were collected in clean glass jars and bags supplied by the laboratory. The jars were filled to capacity to ensure minimal headspace was present and placed directly into a chilled esky for transportation to the laboratory.

The Soil Vapour Bores were purged and sampled in accordance with (DECCW, 2010) Vapour Intrusion: Technical Practice Note and samples were transported in Silonite Mini-Cans to the laboratory.

The investigations and sampling methods adopted for the site remediation works were considered suitable for the identified CoPC. ADE considers that the analytical results are representative of the conditions of the sampling locations at the time of sampling and are directly usable for the purpose of this assessment.

Blind and Split Replicate Samples

Australian Standard 4428.1 and ASC NEPM (2013) specifies the typical Relative Percentage Data (RPD) values for replicate samples to be below 30%. If both samples' values are less than the practical quantification limit (PQL), the RPD is not calculated. RPDs are only calculated when the concentration is greater than 1x the EQL. The acceptable RPDs were specified in the Measurement Data Quality Indicators (MDQIs) from the DQOs (ADE, 2023) and for each EQL multiplier range are:

- Reported result is between 1 10 x EQL 81% (1 10 x EQL);
- Reported result is between 10 30 x EQL 50% (10 30 x EQL);
- Reported result is > 30 x EQL 30% (> 30 x EQL).

The RPD is calculated with the following formula:

$$RPD = \frac{|x - y|}{\frac{(x + y)}{2}} \times 100$$

BR1 is an intra-laboratory (blind) duplicate of primary soil sample BH03_0.2-0.3, analysed at SLS. None of the RPD values between SBR1 and the parent sample were noted to be invalid within the adopted criteria (refer to **Appendix I– RPD calculation**).

SR is an inter-laboratory (split) duplicate of primary soil sample BH03_0.2-0.3. Marginal exceedances of the tolerance between SR and the parent sample were observed for TRH fraction sum and Copper and Zinc that can be attributed to the inherent heterogenous nature of fill material.

None of the exceedances affect the overall outcome of the assessment.

Trip/ Field Blank and Trip Spike Samples

Trip blank and trip spike samples are laboratory prepared control samples that are taken into the field and stored with samples collected during the course of any investigation to evaluate the sample handling and storage during collection and transport. The trip blank sample is a degassed/ purged sample that does not contain any BTEX group compounds, hence when analysed should be below the laboratory limit of reporting (LOR). Conversely, the trip spike is spiked with a known concentration of BTEX group compounds and then reanalysed upon return to the laboratory to determine the potential for volatile loss and potential cross contamination.

The trip spike results are compared to the known concentration, or a control analysis conducted prior to the sample being issued by the laboratory. Where the concentrations are below the DQI, there is potential for volatile contaminants to have been lost, and therefore a Type I error (i.e., false negative) may occur or other samples may be cross contaminated and a Type 2 error (i.e., false positive) may occur.

No trip blank or trip spike samples were evaluated during the site assessment.

None of the soil samples reported BTEX concentrations exceeding the SAC and were below the LOR for the laboratory hence the absence of the trip spike and blank will not affect the outcome of this assessment.

The soil laboratory results were consistent with field observations including no odours or PID readings greater than 1.0 ppm.

Equipment Calibration and Decontamination

Equipment used to assess for potential contamination or measure parameters in the field requires calibration in accordance with the manufacturer's requirements to ensure that the results are accurate. All equipment must be calibrated prior to entering the field and should be bump tested as required but at a minimum at the start of each day where sampling is undertaken.

Field equipment requiring calibration included the use of a photo-ionisation detector (PID) during the initial borehole assessment and during the soil vapour sampling. The PID was calibrated by an external qualified technician before the sampling events (refer to **Appendix E** for the calibration certificates used for each event).

Soil samples for chemical and asbestos analysis were collected using dedicated sampling equipment (i.e., disposable nitrile gloves).

Laboratory Data Evaluation

Quality control reports from the laboratories subcontracted for sample analyses were reviewed. Laboratory blank samples, duplicate samples, control samples, spiked samples and method blanks were evaluated.

Accreditation and Documentation

The analytical laboratories utilised during the course of this investigation were suitable accredited by National Association of Testing Authorities (NATA) for the required analysis and adopted approved methodologies. The following laboratories were used in the course of the investigation:

- Primary laboratories:
 - Sydney Laboratory Services Pty Ltd (SLS) accreditation number 14664
 - Australian Laboratory Services Pty Ltd (ALS) accreditation number 825
- Secondary laboratory:

• Envirolab Services Pty Ltd (Envirolab) - accreditation number 2901

The laboratory methodologies and the respective accreditations of SLS, ALS and Envirolab were deemed suitable for the required analyses. Refer to **Appendix G – Analytical Reports and Chain of Custody Documentation** for the details of the adopted laboratory analytical methods, their respective accreditations and full laboratory transcripts including:

- Sample Receipt Notification (SRN);
- Certificates of Analysis (CoA);
- Quality Assurance and Quality Control Reports (if any); and
- Chain of Custody documentation.

Australian Standard AS 4482.1 defines the chain-of-custody documentation as the link in the transfer of samples between the time of collection and arrival at the laboratory.

The CoC utilised by ADE included the items recommended by the Standard:

- The person transferred the samples;
- The person who received the samples;
- Date the samples were collected;
- Date the samples were received at the laboratory; and
- Contact name and details for the client.

Preservation, Storage and Holding Times

Sample preservation, storage and recommended holding time requirements aim to prevent the potential for contamination to degrade during the time between sample collection and analysis. In general, samples are required to be stored at <4°C prior to extraction at the analytical laboratory. The preservation and holding time requirements vary depending on the analyte with volatile compounds generally requiring extraction in a short period of time (approximately 7-14 days), while more stable compounds have holding times up to several months. Note that there is no storage or holding time requirements for samples of asbestos or ACM.

Preservatives are generally not added to soil samples but are required for samples of ground or surface water that may be collected during an investigation.

The samples were in proper custody between the field and reaching the laboratory in a good condition, documented in a signed chain of custody form (refer to **Appendix G**)

Samples were properly and adequately preserved and refrigerated, and all primary and QAQC samples collected over the course of the investigation were submitted within the recommended holding times of the required analysis. As such, the holding times of the samples to the final submission to the laboratories used (SLS and Envirolab) meet the recommended holding time criteria, with all samples analysed within 7 days (or specific to an analyte) from the time of collection.

Minimum Detection Limits

To ensure that Type 1 errors (i.e., false negative) do not occur during the analysis of chemical contaminants and that suitable resolution and accuracy to evaluate the risk to receptors are captured, a minimum detection limit (MDL or LOR) should be set as 50% of the relevant criteria threshold as per ASC NEPM (2013).

The LORs were sufficient to accurately quantify detectable contaminants.

Duplicate Samples

Internal laboratory duplicates are completed to assess for the reproducibility between known primary and the duplicate samples via RPD comparison.

All laboratory duplicates were reported to have RPDs within acceptable limits.

Matrix Spikes

Matrix spikes require samples submitted to the analytical laboratory to be spiked with a known concentration of a generally synthetic compound that is similar to those likely to be present within the sample to evaluate the matrix interference on the analyte recoveries. The laboratory limit of 70-130% for inorganics / metals, and 60-140% for organics was used to validate matrix spikes.

All matrix spike results were within acceptable criteria.

Laboratory Control Spikes and Surrogates

Laboratory control spikes are similar to matrix spikes, however, utilise a matrix that is free from interference (e.g., other contaminants) to demonstrate that the analytical system is in control.

The laboratory limit of 70-130% for inorganics / metals, and 60-140% for organics was used to validate laboratory control samples. The laboratory limit of 50-150% was implemented to validate surrogate recoveries for organic analytes.

The recoveries for the laboratory control spikes and the surrogates were within acceptable criteria.

Method Blanks

Method blanks assess for false positives by analysing a blank sample and ensuring that the returned result is below the MDL. No contaminants were found in the blanks analysed by the laboratory.

Summary

The acceptable limits on decision errors to be applied in the investigation and the manner of addressing possible decision errors have been applied. The data is considered suitable for its intended use in operations, decision making and planning as per step 6 of the data quality objectives and assessment.

Appendix I: RPD calculations

		Lab Report Number	A101023.0722.00 (368-378)	A101023.0722.00 (368-378)	$\overline{}$
		Field ID	C_BH03_0.2-0.3 12 Jan 2024	BR 12 Jan 2024	-
		Matrix Type	Soil	Soil	RPD
Metals	Unit	EQL			
Arsenic Cadmium	mg/kg mg/kg	4 0.3	<5.0 0.31	<5.0 <0.30	3
Chromium (III+VI) Copper	mg/kg mg/kg	1	18.1 41.1	15.3 45.3	17 10
Lead Mercury	mg/kg	0.1	17.7 <0.10	11.8 <0.10	40
Nickel	mg/kg mg/kg	1	53.0	52.9	0
Zinc BTEX	mg/kg	1	56.8	55.8	2
Benzene Toluene	mg/kg mg/kg	0.2	<0.50 <0.50	<0.50 <0.50	0
Ethylbenzene Xylene (m & p)	mg/kg mg/kg	1 2	<1.0 <2.0	<1.0 <2.0	0
Xylene (o)	mg/kg	1	<1.0 <2.0	<1.0	0
Xylene Total Naphthalene (VOC)	mg/kg mg/kg	1 1	NT	<2.0 NT	0 NT
Total BTEX PAH	mg/kg	2	<2.00	<2.00	0
Acenaphthene Acenaphthylene	mg/kg mg/kg	0.1 0.1	<0.30 <0.30	<0.30 <0.30	0
Anthracene	mg/kg	0.1	<0.30 <0.30	<0.30 <0.30	0
Benzo(b+j+k)fluoranthene Benz(a)anthracene	mg/kg mg/kg	0.2 0.1	< 0.30	<0.30	0
Benzo(a) pyrene Benzo(g,h,i)perylene	mg/kg mg/kg	0.05 0.1	<0.30 <0.30	<0.30 <0.30	0
Chrysene Dibenz(a,h)anthracene	mg/kg mg/kg	0.1 0.1	<0.30 <0.30	<0.30 <0.30	0
Fluoranthene	mg/kg	0.1	< 0.30	<0.30	0
Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg mg/kg	0.1	<0.30 <0.30	<0.30 <0.30	0
Naphthalene Phenanthrene	mg/kg mg/kg	0.1	<0.30 <0.30	<0.30 <0.30	0
Pyrene PAHs (Sum of positives)	mg/kg mg/kg	0.1 0.05	<0.30 <0.30	<0.30 <0.30	0
PCBs			<0.50		
Arochlor 1016 Arochlor 1221	mg/kg mg/kg	0.1 0.1	<0.50	<0.50 <0.50	0
Arochlor 1232 Arochlor 1242	mg/kg mg/kg	0.1 0.1	<0.50 <0.50	<0.50 <0.50	0
Arochlor 1248 Arochlor 1254	mg/kg mg/kg	0.1 0.1	<0.50 <0.50	<0.50 <0.50	0
Arochlor 1260	mg/kg	0.1	<0.50 NT	<0.50 NT	0 NT
PCBs (Sum of total) Physical	mg/kg				
Moisture Content TRH	%	0.1	3.9	5.6	36
C6-C10 Fraction (F1) C6-C10 (F1 minus BTEX)	mg/kg mg/kg	25 25	<35 <35	<35 <35	0
>C10-C16 Fraction (F2)	mg/kg	50	<50	<50	0
>C10-C16 Fraction (F2 minus Naphthalene)	mg/kg	50	NT	NT	NT
>C16-C34 Fraction (F3) >C34-C40 Fraction (F4)	mg/kg mg/kg	100 100	<100 175	139 225	33 25
>C10-C40 Fraction (Sum) TPH	mg/kg	50	175	364	70
C6-C9 Fraction C10-C14 Fraction	mg/kg	25 50	<25 <50	<25 <50	0
C15-C28 Fraction	mg/kg mg/kg	100	<100	<100	0
C29-C36 Fraction C10-C36 Fraction (Sum)	mg/kg mg/kg	100 50	162 162	239 239	38
Organochlorine Pesticides 4,4-DDE	mg/kg	0.1	<0.10	<0.10	0
a-BHC Aldrin	mg/kg	0.1	<0.10 <0.10	<0.10 <0.10	0
b-BHC	mg/kg mg/kg	0.1 0.1	< 0.10	<0.10	0
Chlordane (cis) Chlordane (trans)	mg/kg mg/kg	0.1 0.1	<0.10 <0.10	<0.10 <0.10	0
d-BHC DDD	mg/kg mg/kg	0.1 0.1	<0.10 <0.10	<0.10 <0.10	0
DDT	mg/kg	0.1	<0.10	<0.10	0 NT
DDT+DDE+DDD Dieldrin	mg/kg mg/kg	0.1	NT <0.10	NT <0.10	0
Endosulfan I Endosulfan II	mg/kg mg/kg	0.1 0.1	<0.20 <0.20	<0.20 <0.20	0
Endosulfan sulphate Endrin	mg/kg mg/kg	0.1 0.1	<0.10 <0.20	<0.10 <0.20	0
Endrin aldehyde Endrin ketone	mg/kg mg/kg	0.1 0.1	<0.10 <0.10	<0.10 <0.10	0
Fenamiphos	mg/kg	0.1	NT	NT	NT
g-BHC (Lindane) Heptachlor	mg/kg mg/kg	0.1 0.1	<0.10 <0.10	<0.10 <0.10	0
Heptachlor epoxide Methoxychlor	mg/kg mg/kg	0.1 0.1	<0.10 <0.10	<0.10 <0.10	0
Mirex Organophosphorous Pesticides	mg/kg	0.1	NT	NT	NT
Azinophos methyl	mg/kg	0.1	NT NT	NT NT	NT
Bromophos-ethyl Chlorpyrifos	mg/kg mg/kg	0.1 0.1	NT <0.10	NT <0.10	NT 0
Chlorpyrifos-methyl Coumaphos	mg/kg mg/kg	0.1	<0.10 NT	<0.10 NT	0 NT
Tribuphos Diazinon	mg/kg mg/kg	0.1 0.1	<0.10 <0.10	<0.10 <0.10	0
Dichlorvos	mg/kg	0.1	NT NT	NT NT	NT NT
Dimethoate Disulfoton	mg/kg mg/kg	0.1	NT	NT	NT
Ethion Ethoprop	mg/kg mg/kg	0.1	NT <0.10	NT <0.10	NT 0
Fenitrothion Fenthion	mg/kg mg/kg	0.1 0.1	NT NT	NT NT	NT NT
Malathion	mg/kg	0.1	NT	NT	NT
Methidathion Methyl parathion	mg/kg mg/kg	0.1 0.1	NT <0.10	NT <0.10	NT 0
Mevinphos (Phosdrin) Parathion	mg/kg mg/kg	0.1 0.1	NT NT	NT NT	NT NT
Phorate Ronnel	mg/kg mg/kg	0.1	NT <0.10	NT	NT 0
Halogenated Benzenes			<0.10	NJ.10	
					0
Hexachlorobenzene Other	mg/kg	0.1	VI.10	<0.10 NT	NT

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 100 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary lal

		Lab Report Number Field ID	A101023.0722.00 (368-378)	341485 SR	
		Date Matrix Type	C_BH03_0.2-0.3 12 Jan 2024 Soil	12 Jan 2024 Soil	RPD
	Unit	EQL EQL	3011	j 30ii	KFD
Metals			4E 0		0
Arsenic Cadmium	mg/kg mg/kg	4 0.3	<5.0 0.31	<4 <0.4	0
Chromium (III+VI) Copper	mg/kg mg/kg	1	18.1 41.1	11 56	49 31
Lead Mercury	mg/kg mg/kg	0.1	17.7 <0.10	11 <0.1	47 0
Nickel Zinc	mg/kg	1	53.0 56.8	42 33	23
BTEX	mg/kg	<u> </u>			53
Benzene Toluene	mg/kg mg/kg	0.2 0.5	<0.50 <0.50	<0.2 <0.5	0
Ethylbenzene Xylene (m & p)	mg/kg mg/kg	1 2	<1.0 <2.0	<1 <2	0
Xylene (o) Xylene Total	mg/kg mg/kg	1 1	<1.0 <2.0	<1	0
Naphthalene (VOC)	mg/kg	1	NT	<1	NT
Total BTEX PAH	mg/kg	2	<2.00	NT	NT
Acenaphthene Acenaphthylene	mg/kg mg/kg	0.1 0.1	<0.30 <0.30	<0.1 <0.1	0
Anthracene Benzo(b+j+k)fluoranthene	mg/kg mg/kg	0.1 0.2	<0.30 <0.30	<0.1 <0.2	0
Benz(a)anthracene	mg/kg	0.1	<0.30	<0.1	0
Benzo(a) pyrene Benzo(g,h,i)perylene	mg/kg mg/kg	0.05 0.1	<0.30 <0.30	<0.05 <0.1	0
Chrysene Dibenz(a,h)anthracene	mg/kg mg/kg	0.1 0.1	<0.30 <0.30	<0.1	0
Fluoranthene Fluorene	mg/kg mg/kg	0.1 0.1	<0.30 <0.30	<0.1 <0.1	0
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	<0.30 <0.30 <0.30	<0.1	0
Naphthalene Phenanthrene	mg/kg mg/kg	0.1 0.1	<0.30	<0.1	0
Pyrene PAHs (Sum of positives)	mg/kg mg/kg	0.1 0.05	<0.30 <0.30	<0.1 <0.05	0
PCBs Arochlor 1016	mg/kg	0.1	<0.50	<0.1	0
Arochlor 1221	mg/kg	0.1 0.1	<0.50 <0.50	<0.1 <0.1 <0.1	0
Arochlor 1232 Arochlor 1242	mg/kg mg/kg	0.1	< 0.50	< 0.1	0
Arochlor 1248 Arochlor 1254	mg/kg mg/kg	0.1 0.1	<0.50 <0.50	<0.1 <0.1	0
Arochlor 1260 PCBs (Sum of total)	mg/kg mg/kg	0.1 0.1	<0.50 NT	<0.1	0 NT
Physical	%	0.1	3.9	4.9	23
Moisture Content TRH					
C6-C10 Fraction (F1) C6-C10 (F1 minus BTEX)	mg/kg mg/kg	25 25	<35 <35	<25 <25	0
>C10-C16 Fraction (F2) >C10-C16 Fraction (F2 minus	mg/kg	50	<50	<50	0
Naphthalene) >C16-C34 Fraction (F3)	mg/kg	50 100	NT <100	<50 200	NT 67
>C34-C40 Fraction (F4)	mg/kg mg/kg	100	175	420	82
>C10-C40 Fraction (Sum) TPH	mg/kg	50	175	620	112
C6-C9 Fraction C10-C14 Fraction	mg/kg mg/kg	25 50	<25 <50	<25 <50	0
C15-C28 Fraction C29-C36 Fraction	mg/kg	100 100	<100 162	<100 280	0 53
C10-C36 Fraction (Sum)	mg/kg mg/kg	50	162	280	53
Organochlorine Pesticides 4,4-DDE	mg/kg	0.1	<0.10	<0.1	
a-BHC	mg/kg			40.1	0
Aldrin	mg/kg	0.1 0.1	<0.10 <0.10	< 0.1	0
Aldrin b-BHC	mg/kg mg/kg	0.1 0.1	<0.10 <0.10	<0.1 <0.1 <0.1	0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans)	mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	<0.10 <0.10 <0.10 <0.10	<0.1 <0.1 <0.1 <0.1 <0.1	0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	<0.10 <0.10 <0.10 <0.10	<0.1 <0.1 <0.1 <0.1 <0.1	0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cts) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD Dleldrin	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cts) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD Dieldrin Endosulfan II	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.20 <0.20 <0.20	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cls) Chlordane (trans) d-BHC DDD DDT DDT DDT+DDE+DDD Dieldrin Endosulfan I Endosulfan I Endosulfan sulphate Endrin	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD Dieldrin Endosulfan II Endosulfan sulphate	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 NT <0.10 <0.20 <0.20 <0.20 <0.10 <0.20 <0.10 <0.20 <0.10 <0.20 <0.20 <0.10 <0.20 <0.20 <0.10 <0.20	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD Dieldrin Endosulfan II Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone Fenamiphos	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.20 <0.20 <0.20 <0.10 <0.20 <0.10 <0.20 <0.10 <0.20 <0.10 <0.20 <0.10 <0.20 <0.10 <0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cts) Chlordane (trans) d-BHC DDD DDT DDT DDT DDT+DDE+DDD Dieldrin Endosulfan II Endosulfan II Endosulfan II Endoff aldehyde Endrin aldehyde Endrin letone Fenamiphos g-BHC (Lindane) Heptachlor	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 NT <0.10 <0.20 <0.20 <0.20 <0.10 <0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD Dieldrin Endosulfan II Endrin aldehyde Endrin ketone Fenamiphos g_BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 <0.10 <0.20 <0.20 <0.20 <0.10 	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD Dieldrin Endosulfan II Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone Fenamiphos g-BHC (Lindane) Heptachlor Heptachlor	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.20 -0.20 -0.20 -0.20 -0.10 -0.20 -0.10 -0.20 -0.10 	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD DDIEdrin Endosulfan II endosulfan sulphate endrin Endrin aldehyde endrin ketone Fenamiphos g_BHC (Lindane) Heptachlor epoxide Methoxychlor Mirex Organophosphorous Pesticides Azinophos methyl	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 <0.10 <0.20 <0.20 <0.20 <0.10 	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD Dieldrin Endosulfan II Endosulfan Sulphate Endrin Endrin aldehyde Endrin ketone Fenamiphos g_BHC (Lindane) Heptachlor epoxide Methoxychlor Mirex Organophosphorous Pesticides Azinophos methyli Bromophos-ethyl Bromophos-ethyl Chlorpyrifos	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 NT <0.10 <0.20 <0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT DDT+DDE+DDD Dieldrin Endosulfan II Endosulfan II Endosulfan II Endosulfan IB Endrin	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 -Q 10 -Q 20 -Q 20 -Q 20 -Q 10 -Q 20 -Q 10 -Q	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD DDIeldrin Endosulfan II Endosulfan SII Endosulfan II En	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 Q 10 Q 20 Q 20 Q 10 NT Q 10 N 1 N T O 10 O 10 O 10 	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD Dieldrin Endosulfan I Endosulfan II Endosulfan SI Endrin Endri	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 -0.10 -0.20 -0.20 -0.20 -0.10 	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD Dieldrin Endosulfan II Endosulfan Sulphate Endrin Endrin aldehyde Endrin ketone Fenamiphos g-BHC (Lindane) Heptachlor epoxide Methoxychlor Methoxychlor Mirex Organophosphorous Pesticides Azinophos methyl Bromophos-ethyl Chlorpyrifos Chlorpyrifos Chlorpyrifos Chlorpyrifos Tribuphos Diazinon Dicklioros Dilazinon Dicklioros Dilazinon	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 40 10 40 10 40 20 40 20 40 20 40 20 40 10 50 10 70 10 8 10 8 10 9 10 6 10 6 10 8 10 9 10	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD Dileldrin Endosulfan II End	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 -Q 10 -Q 20 -Q 20 -Q 10 -Q 20 -Q 10 	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD DDI DDT+DDE+DDD Dieldrin Endosulfan II Endosulfan SII Endrin Aldehyde Endrin Endrin Endrin Endrin Endrin Endrin Ketone Fenamiphos g-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Mirex Organophosphorous Pesticides Azinophos methyl Enomophos-ethyl Chlorpyrifos-methyl Coumaphos Tribuphos Diazinon Diazinon Dichlorvos Dimethoate Disulfoton Ethion	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 Q 10 Q 20 Q 20 Q 10 NT Q 10 Q 10 NT NE <li< td=""><td><pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre></td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></li<>	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD DDI DDT+DDE+DDD Dieldrin Endosulfan I Endosulfan II End	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 20 40 20 40 20 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 50 10 80 10 70 10 80	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT-DDE-DDD DDT DDT-DDE-DDD Dieldrin Endosulfan II Endosulfan II Endosulfan III	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 40 10 40 20 40 20 40 20 40 20 40 10 50 10 NT NT NT 60 10 60 10 80 10 	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT-DDF-DDD DDT DDT-DDF-DDD Dieldrin Endosulfan II Endosulfan SI Endrin Aldehyde Endrin ketone Fenamiphos g-8HC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Mirex Organophosphorous Pesticides Azinophos methyl Enomophos-ethyl Chlorpyrifos—methyl Coumaphos Tribuphos Diazinon Dichiorova Diazinon Dichiorova Disulfoton Ethion Ethorop Fenitrothion Fenitrothion Fenitrothion Malathion Methidathion	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 Q 10 Q 20 Q 20 Q 10 Q 20 Q 10 NT NT	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD Dieldrin Endosulfan I Endosulfan II Endosulfan SI Endrin Endri	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<pre><0.10 <0.10 <0.20 <0.20 <0.20 <0.20 <0.10 <</pre>	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT+DDE+DDD DDI Indirin Endosulfan I Endosulfan II En	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<pre><0.10 <0.10 <</pre>	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aldrin b-BHC Chlordane (cis) Chlordane (trans) d-BHC DDD DDT DDT DDT DDT DDT-DDE-DDD Dieldrin Endosulfan II Endosulfan Sulphate Endrin Endrin Aldehyde Endrin ketone Fenamiphos g-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Milrex Organophosphorous Pesticides Azinophos methyl Eromophos-ethyl Chlorpyrifos-methyl Coumaphos Tribuphos Diazinon Dichlorvos Diazinon Dichlorvos Disulfoton Ethion Ethoprop Fenitrothion Fenthion Malathion Methidathion Metvinphos (Phosdrin) Parathion Phorate Ronnel	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<pre><0.10 <0.10 <0.20 <0.20 <0.20 <0.20 <0.10 <</pre>	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

^{*}RPDs have only been considered where a concentration is greater than 1 times

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs f

***Interlab Duplicates are matched on a per compound basis as methods vary bboratory

Further details regarding ADE's services are available via

ADE Consulting Group Pty Ltd

Sydney

Unit 6/7 Millenium Court Silverwater, NSW 2128 Australia 1300 796 922

ADE Consulting Group (QLD) Pty Ltd

Brisbane

10/53 Metroplex Avenue, Murarrie QLD 4172, Australia. 1300 796 922

Newcastle

Unit 9/103 Glenwood Drive Thornton, NSW 2322, Australia 1300 796 922

ADE Consulting Group (VIC) Pty Ltd

Melbourne

Unit 4/95 Salmon Street Port Melbourne, VIC 3207, Australia 1300 796 922